{ "cells": [ { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] } ], "source": [ "from notepad import WaterStorage\n", "\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Developments steps to take: \n", "* Test the WaterStorage\n", "* Create some example for WaterStorage\n", "* Define interactions WaterStorage <> Heatpump\n", "* Create some example for WaterStorage + Heatpump\n", "* Develop the interactions --> Create working examples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## WaterStorage" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Functional requirements for the WaterStorage:\n", "* Given: \n", " * Size / capacity\n", " * Temperature in/out\n", " * Max power\n", " * Roundtripp efficiency\n", "* It should be able to execute commands, like: \n", " * Charge\n", " * Discharge\n", " * Whats the storage level? \n", " * Assign financials \n", " * Take into account storage losses (time dependent)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "waterstorage = WaterStorage(\n", " name='MyStorage',\n", " max_power=10,\n", " min_power=-10,\n", " roundtrip_eff=0.90,\n", " energy_density = 50 * 10e-3,\n", " volume = 500,\n", " lifetime = 25,\n", " temperature = 368, #K\n", " min_storagelevel = 5,\n", " max_storagelevel = 23\n", " \n", ")" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "waterstorage.set_freq('15T')" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "15" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "waterstorage.set_storagelevel(15)\n", "waterstorage.storagelevel" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "32.0" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "waterstorage.charging_power_limit" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "32.0" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "waterstorage.charge(100)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "23" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "waterstorage.storagelevel" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.0" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "waterstorage.charge(100)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "50.0" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "waterstorage.discharge(50)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def test_heatpump_and_waterstorage_system(Tsink, Tsource, process_demand_MW, e_price, waterstorage_level):\n", " \"\"\"\n", " 1. Follow a certain logic based on given price:\n", " - If price is low --> Heatpump at full power, and charge the heatbuffer\n", " - If price is high --> Discharge the heat buffer, and increase Tsource, which will increase COP\n", " 2. Above logic should adhere to a couple of constraints:\n", " - Storage levels\n", " - Capacity of the heat pump \n", " - Process demand\n", " - ....\n", " 3. This function should contain: \n", " - Heat pump \n", " - Water storage\n", " - Interactions / logic between them\n", " 4. Output of the function:\n", " - Power of the heatpump \n", " - \"New\" water storage level\n", " \"\"\"\n", " waterstorage.storage_level = waterstorage_level\n", " \n", " if price > 100:\n", " hp_load = heatpump.set_load('max')\n", " energy_to_storage = hp_load - demand\n", " waterstorage.charge(energy_to_storage)\n", " waterstorage_level = waterstorage.storage_level\n", " if price < 50:\n", " energy_from_storage = waterstorage.discharge('max')\n", " waterstorage_level = waterstorage.storage_level\n", " new_Tsource = Tsource_calc(Tsource, energy_from_storage)\n", " new_COP = cop_calc(new_Tsource, Tsink) \n", " hp_load = heatpump.set_load(demand, new_COP)\n", " return hp_load, waterstorage_level\n", " \n", "hp_load, waterstorage_level = test_heatpump_waterstorage_system(\n", " Tsink = 373+100, \n", " Tsoucre = 373+50, \n", " process_demand = 20, \n", " e_price = 150, \n", " waterstorage_level = 0.50\n", ")\n", "\n", "# Expected behaviour: \n", " # hp_heat_output == demand\n", " # hp source temparture > than before\n", " # waterstorage_level < than before\n", " # hp cop > higher than before\n", "hp_load, waterstorage_level" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "Tsink = 413 #K\n", "Tsource = 333 #K\n", "Tref = 273 #K\n", "hp_capacity = 31 #MW\n", "demand = 25 #MW\n", "Cp = 4190 #J/kgK\n", "MW_to_J_per_s = 1000_000\n", "hp_capacity *= MW_to_J_per_s\n", "demand *= MW_to_J_per_s" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "52.84691442209342" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def hp_mass_flow (hp_capacity, Tsink, Tref, Cp):\n", " return hp_capacity /(Cp*(Tsink - Tref)) \n", "hp_mass_flow (31_000_000, 413, 273, 4190)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "42.61847937265598" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def process_mass_flow (demand, Tsink, Tref, Cp):\n", " return demand /(Cp*(Tsink - Tref)) \n", "process_mass_flow (25_000_000, 413, 273, 4190)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5.866" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "charge_mass_flow = 52 - 42 #can be written as a functiality\n", "charged_heat = (charge_mass_flow * Cp * (Tsink - Tref)) / MW_to_J_per_s\n", "charged_heat" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "# charge_mass_flow = 52 - 42 #should be written as function\n", "# def charge_heat (charge_mass_flow, Cp, Tsink, Tref, MW_to_J_per_s):\n", "# return (charge_mass_flow * Cp * (Tsink - Tref)) / MW_to_J_per_s\n", "# charge_heat (10, 4190, 413, 273, 1000_000)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "# def source_mass_flow (demand, Tsource, Tref, Cp):\n", "# return demand /(Cp*(Tsource - Tref)) \n", "# source_mass_flow (25_000_000, 333, 273, 4190) " ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.514" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# efficiency = 0.7\n", "Tstorage = 95 + 273\n", "discharge_mass_flow = charge_mass_flow\n", "discharged_heat = (discharge_mass_flow * Cp * (Tsource - Tref)) / MW_to_J_per_s\n", "discharged_heat\n", "# mass flows need to be balanced not energy\n", "#This energy loss is because storage is charged with high temperature and discharged with low.\n", "# heat loss can be neglected assuming that storage is well-insulated." ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "66.73076923076923" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Tsource_new = (discharge_mass_flow * T_discharge + Tsource * source_mass_flow) / (discharge_mass_flow + source_mass_flow)\n", "Tsource_new = (10 * 95 + 60*42) / (10+42)\n", "Tsource_new\n" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5.636745406824146" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Tsource_new +=273\n", "COP_new = Tsink / (Tsink - Tsource_new)\n", "COP_new" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dict_keys(['name', 'id', 'max_power', 'min_power', 'modes', 'roundtrip_eff', 'volume', 'lifetime', 'temperature', 'energy_density', 'max_storage_capacity', 'max_storagelevel', 'min_storagelevel', 'freq', 'time_factor', 'storagelevel'])" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "waterstorage.__dict__.keys()" ] }, { "cell_type": "code", "execution_count": 128, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "23.2" ] }, "execution_count": 128, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# max_storage_capacity is in MWh and it should inherit MWh to MW conversion from Assets\n", "# MW = MWh / self.time_factor\n", "waterstorage.max_storage_capacity" ] }, { "cell_type": "code", "execution_count": 129, "metadata": {}, "outputs": [], "source": [ "# chargelevel = self.chargelevel\n", "# max_charging = chargelevel - self.max_chargelevel\n", "# max_discharging = chargelevel - self.min_chargelevel" ] }, { "cell_type": "code", "execution_count": 130, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "18.2" ] }, "execution_count": 130, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Funtionality: Set the storage level\n", "waterstorage.storagelevel = 15\n", "waterstorage.max_storagelevel = 23.2\n", "waterstorage.min_storagelevel = 5\n", "# waterstorage.max_charging = waterstorage.max_storagelevel - waterstorage.storagelevel\n", "# waterstorage.max_discharging = waterstorage.max_storagelevel - waterstorage.min_storagelevel\n", "waterstorage.max_discharging" ] }, { "cell_type": "code", "execution_count": 131, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "20" ] }, "execution_count": 131, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Functionality: Charge the storage\n", "waterstorage.storage_level = 15\n", "waterstorage.charge = 5\n", "waterstorage.storage_level += waterstorage.charge\n", "waterstorage.storage_level" ] }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "11" ] }, "execution_count": 132, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Functionality: Discharge the storage\n", "waterstorage.storage_level = 15\n", "waterstorage.discharge = 4\n", "waterstorage.storage_level -= waterstorage.discharge\n", "waterstorage.storage_level" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## WaterStorage + Heatpump system" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Functional requirements for the WaterStorage + Heatpump system:\n", "1. Goal (Funtional requirements): \n", " * Given (context)\n", " * price (forecast), \n", " * source and sink temperature (provided by process), \n", " * process heat demand, \n", " * storage level of the water storage (temperature level)\n", "* I want to know:\n", " * Heat output from the heatpump (in MW)\n", " * New storage level / temperature level\n", " * Electricity consumption of the heatpump" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.5" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }