{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from notepad import WaterStorage, Heatpump\n",
"\n",
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import pandas as pd\n",
"import cufflinks\n",
"cufflinks.go_offline()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Tsource (VDG) | \n",
" Tsink (VDG) | \n",
" MW (VDG) | \n",
" Tsource (NDG) | \n",
" Tsink (NDG) | \n",
" MW (NDG) | \n",
"
\n",
" \n",
" \n",
" \n",
" | 2018-11-01 00:00:00 | \n",
" 64.964783 | \n",
" 142.003109 | \n",
" 0.000000 | \n",
" 19.897433 | \n",
" 147.731814 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 2018-11-01 00:15:00 | \n",
" 54.578777 | \n",
" 138.960493 | \n",
" 0.000000 | \n",
" 17.950905 | \n",
" 148.138964 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 2018-11-01 00:30:00 | \n",
" 65.166672 | \n",
" 139.885329 | \n",
" 0.000000 | \n",
" 33.500757 | \n",
" 147.585426 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 2018-11-01 00:45:00 | \n",
" 65.358078 | \n",
" 139.731901 | \n",
" 0.000000 | \n",
" 42.203876 | \n",
" 147.547612 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 2018-11-01 01:00:00 | \n",
" 64.947536 | \n",
" 139.577871 | \n",
" 0.000000 | \n",
" 18.702675 | \n",
" 148.260335 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 2018-11-01 01:15:00 | \n",
" 65.073433 | \n",
" 139.423357 | \n",
" 0.000000 | \n",
" 19.903652 | \n",
" 149.186865 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 2018-11-01 01:30:00 | \n",
" 47.711559 | \n",
" 140.328730 | \n",
" 0.000000 | \n",
" 19.574467 | \n",
" 147.800016 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 2018-11-01 01:45:00 | \n",
" 29.525829 | \n",
" 140.298902 | \n",
" 0.000000 | \n",
" 17.065464 | \n",
" 147.906886 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 2018-11-01 02:00:00 | \n",
" 65.715569 | \n",
" 139.991650 | \n",
" 10.139587 | \n",
" 49.339708 | \n",
" 149.603741 | \n",
" 3.333301 | \n",
"
\n",
" \n",
" | 2018-11-01 02:15:00 | \n",
" 65.929909 | \n",
" 148.342325 | \n",
" 19.585104 | \n",
" 61.721718 | \n",
" 155.887905 | \n",
" 6.455359 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Tsource (VDG) Tsink (VDG) MW (VDG) Tsource (NDG) \\\n",
"2018-11-01 00:00:00 64.964783 142.003109 0.000000 19.897433 \n",
"2018-11-01 00:15:00 54.578777 138.960493 0.000000 17.950905 \n",
"2018-11-01 00:30:00 65.166672 139.885329 0.000000 33.500757 \n",
"2018-11-01 00:45:00 65.358078 139.731901 0.000000 42.203876 \n",
"2018-11-01 01:00:00 64.947536 139.577871 0.000000 18.702675 \n",
"2018-11-01 01:15:00 65.073433 139.423357 0.000000 19.903652 \n",
"2018-11-01 01:30:00 47.711559 140.328730 0.000000 19.574467 \n",
"2018-11-01 01:45:00 29.525829 140.298902 0.000000 17.065464 \n",
"2018-11-01 02:00:00 65.715569 139.991650 10.139587 49.339708 \n",
"2018-11-01 02:15:00 65.929909 148.342325 19.585104 61.721718 \n",
"\n",
" Tsink (NDG) MW (NDG) \n",
"2018-11-01 00:00:00 147.731814 0.000000 \n",
"2018-11-01 00:15:00 148.138964 0.000000 \n",
"2018-11-01 00:30:00 147.585426 0.000000 \n",
"2018-11-01 00:45:00 147.547612 0.000000 \n",
"2018-11-01 01:00:00 148.260335 0.000000 \n",
"2018-11-01 01:15:00 149.186865 0.000000 \n",
"2018-11-01 01:30:00 147.800016 0.000000 \n",
"2018-11-01 01:45:00 147.906886 0.000000 \n",
"2018-11-01 02:00:00 149.603741 3.333301 \n",
"2018-11-01 02:15:00 155.887905 6.455359 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_excel('Demand_Data_Smurfit_Preprocessed.xlsx', sheet_name='nov2018', index_col=0)\n",
"start, end = '2018-11-01 00:00:00', '2018-11-01 12:00:00'\n",
"df = data[start:end]\n",
"df = df.resample('15T', origin=start).mean()\n",
"df=df.drop(['Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 12'], axis=1)\n",
"df[:10]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": true
},
"data": [
{
"line": {
"color": "rgba(255, 153, 51, 1.0)",
"dash": "solid",
"shape": "linear",
"width": 1.3
},
"mode": "lines",
"name": "Tsource (VDG)",
"text": "",
"type": "scatter",
"x": [
"2018-11-01 00:00:00",
"2018-11-01 00:15:00",
"2018-11-01 00:30:00",
"2018-11-01 00:45:00",
"2018-11-01 01:00:00",
"2018-11-01 01:15:00",
"2018-11-01 01:30:00",
"2018-11-01 01:45:00",
"2018-11-01 02:00:00",
"2018-11-01 02:15:00",
"2018-11-01 02:30:00",
"2018-11-01 02:45:00",
"2018-11-01 03:00:00",
"2018-11-01 03:15:00",
"2018-11-01 03:30:00",
"2018-11-01 03:45:00",
"2018-11-01 04:00:00",
"2018-11-01 04:15:00",
"2018-11-01 04:30:00",
"2018-11-01 04:45:00",
"2018-11-01 05:00:00",
"2018-11-01 05:15:00",
"2018-11-01 05:30:00",
"2018-11-01 05:45:00",
"2018-11-01 06:00:00",
"2018-11-01 06:15:00",
"2018-11-01 06:30:00",
"2018-11-01 06:45:00",
"2018-11-01 07:00:00",
"2018-11-01 07:15:00",
"2018-11-01 07:30:00",
"2018-11-01 07:45:00",
"2018-11-01 08:00:00",
"2018-11-01 08:15:00",
"2018-11-01 08:30:00",
"2018-11-01 08:45:00",
"2018-11-01 09:00:00",
"2018-11-01 09:15:00",
"2018-11-01 09:30:00",
"2018-11-01 09:45:00",
"2018-11-01 10:00:00",
"2018-11-01 10:15:00",
"2018-11-01 10:30:00",
"2018-11-01 10:45:00",
"2018-11-01 11:00:00",
"2018-11-01 11:15:00",
"2018-11-01 11:30:00",
"2018-11-01 11:45:00",
"2018-11-01 12:00:00"
],
"y": [
64.96478271484375,
54.57877731323242,
65.16667175292969,
65.35807800292969,
64.94753646850586,
65.07343292236328,
47.7115592956543,
29.525829315185547,
65.71556854248047,
65.9299087524414,
64.95814895629883,
64.9863052368164,
64.99794006347656,
65.00770568847656,
65.01747512817383,
65.0272445678711,
65.0784912109375,
65.1628189086914,
65.00943756103516,
65.13150787353516,
64.97384643554688,
65.06539154052734,
65.01202774047852,
64.91437530517578,
65.00830459594727,
64.89657592773438,
64.91350936889648,
64.9304428100586,
64.94738006591797,
64.96430969238281,
64.98124694824219,
64.99818420410156,
65.0151138305664,
65.03205108642578,
65.04898071289062,
65.06591796875,
65.0814323425293,
65.0777816772461,
65.06596755981445,
65.05415344238281,
65.04234313964844,
64.98916625976562,
64.98598098754883,
64.97528076171875,
64.96401596069336,
64.95275115966797,
64.94278717041016,
64.94033813476562,
64.94033813476562
]
},
{
"line": {
"color": "rgba(55, 128, 191, 1.0)",
"dash": "solid",
"shape": "linear",
"width": 1.3
},
"mode": "lines",
"name": "Tsink (VDG)",
"text": "",
"type": "scatter",
"x": [
"2018-11-01 00:00:00",
"2018-11-01 00:15:00",
"2018-11-01 00:30:00",
"2018-11-01 00:45:00",
"2018-11-01 01:00:00",
"2018-11-01 01:15:00",
"2018-11-01 01:30:00",
"2018-11-01 01:45:00",
"2018-11-01 02:00:00",
"2018-11-01 02:15:00",
"2018-11-01 02:30:00",
"2018-11-01 02:45:00",
"2018-11-01 03:00:00",
"2018-11-01 03:15:00",
"2018-11-01 03:30:00",
"2018-11-01 03:45:00",
"2018-11-01 04:00:00",
"2018-11-01 04:15:00",
"2018-11-01 04:30:00",
"2018-11-01 04:45:00",
"2018-11-01 05:00:00",
"2018-11-01 05:15:00",
"2018-11-01 05:30:00",
"2018-11-01 05:45:00",
"2018-11-01 06:00:00",
"2018-11-01 06:15:00",
"2018-11-01 06:30:00",
"2018-11-01 06:45:00",
"2018-11-01 07:00:00",
"2018-11-01 07:15:00",
"2018-11-01 07:30:00",
"2018-11-01 07:45:00",
"2018-11-01 08:00:00",
"2018-11-01 08:15:00",
"2018-11-01 08:30:00",
"2018-11-01 08:45:00",
"2018-11-01 09:00:00",
"2018-11-01 09:15:00",
"2018-11-01 09:30:00",
"2018-11-01 09:45:00",
"2018-11-01 10:00:00",
"2018-11-01 10:15:00",
"2018-11-01 10:30:00",
"2018-11-01 10:45:00",
"2018-11-01 11:00:00",
"2018-11-01 11:15:00",
"2018-11-01 11:30:00",
"2018-11-01 11:45:00",
"2018-11-01 12:00:00"
],
"y": [
142.00310855616846,
138.96049329913467,
139.8853286080591,
139.7319010492448,
139.57787113583828,
139.42335736219127,
140.32873036288532,
140.29890206259057,
139.99164987434241,
148.34232515339528,
149.5996206735899,
150.48135122376448,
151.0781253786815,
151.789771813141,
151.8355222042393,
151.88123310022075,
155.586501463521,
159.82560913794526,
159.77052577684205,
159.71538765479585,
159.66017937851927,
159.60491605591585,
159.54958528011946,
159.49419917950132,
159.4387406758979,
159.38322962591639,
159.32764734557236,
159.27200916280646,
159.2163024628501,
159.16053957516505,
159.10470472523954,
159.04881339060995,
158.9928528150294,
158.09262646775937,
158.08025849195363,
158.06788773036573,
158.05551032950444,
158.04313329387378,
158.03075276996597,
158.01836945382087,
158.0059826453554,
157.9935930414146,
157.98119994110252,
157.96880088142046,
157.95640148115876,
157.9439992789276,
157.93159357220048,
157.91918506025172,
157.91091084789872
]
}
],
"layout": {
"autosize": true,
"legend": {
"bgcolor": "#F5F6F9",
"font": {
"color": "#4D5663"
}
},
"paper_bgcolor": "#F5F6F9",
"plot_bgcolor": "#F5F6F9",
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"font": {
"color": "#4D5663"
}
},
"xaxis": {
"autorange": true,
"gridcolor": "#E1E5ED",
"range": [
"2018-11-01",
"2018-11-01 12:00"
],
"showgrid": true,
"tickfont": {
"color": "#4D5663"
},
"title": {
"font": {
"color": "#4D5663"
},
"text": ""
},
"type": "date",
"zerolinecolor": "#E1E5ED"
},
"yaxis": {
"autorange": true,
"gridcolor": "#E1E5ED",
"range": [
22.286952658365564,
167.06448579476526
],
"showgrid": true,
"tickfont": {
"color": "#4D5663"
},
"title": {
"font": {
"color": "#4D5663"
},
"text": ""
},
"type": "linear",
"zerolinecolor": "#E1E5ED"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABHgAAAFoCAYAAAAsHEx/AAAAAXNSR0IArs4c6QAAIABJREFUeF7t3QmcZXV5J/yn9uqm6UZUVgU0LhFUGNcZHVB8RUWNMVFnNCaSKJIMapQYMzpxHGNM9BNfE5eIjmKSNsElGF+HN0IiDBiJJGaMgorGJVEQWVyQ3muv+Zxbfatv3b5Vd6n7rzr/e77Fh093VZ3zP8/5Pr/uPv30uecO7ds/vRg+CBAgQIAAAQIECBAgQIAAAQIEshUYMuDJtncKJ0CAAAECBAgQIECAAAECBAjUBAx4BIEAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIECBAgAABAgQIECBAgAABApkLGPBk3kDlEyBAgAABAgQIECBAgAABAgQMeGSAAAECBAgQIECAAAECBAgQIJC5gAFP5g1UPgECBAgQIECAAAECBAgQIEDAgEcGCBAgQIAAAQIECBAgQIAAAQKZCxjwZN5A5RMgQIAAAQIECBAgQIAAAQIEDHhkgAABAgQIECBAgAABAgQIECCQuYABT+YNVD4BAgQIECBAgAABAgQIECBAwIBHBggQIECAAAECBAgQIECAAAECmQsY8GTeQOUTIECAAAECBAgQIECAAAECBAx4ZIAAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIECBAgAABAgQIECBAgAABApkLGPBk3kDlEyBAgAABAgQIECBAgAABAgQMeGSAAAECBAgQIECAAAECBAgQIJC5gAFP5g1UPgECBAgQIECAAAECBAgQIEDAgEcGCBAgQIAAAQIECBAgQIAAAQKZCxjwZN5A5RMgQIAAAQIECBAgQIAAAQIEDHhkgAABAgQIECBAgAABAgQIECCQuYABT+YNVD4BAgQIECBAgAABAgQIECBAwIBHBggQIECAAAECBAgQIECAAAECmQsY8GTeQOUTIECAAAECBAgQIECAAAECBAx4ZIAAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIECBAgAABAgQIECBAgAABApkLGPBk3kDlEyBAgAABAgQIECBAgAABAgQMeGSAAAECBAgQIECAAAECBAgQIJC5gAFP5g1UPgECBAgQIECAAAECBAgQIEDAgEcGCBAgQIAAAQIECBAgQIAAAQKZCxjwZN5A5RMgQIAAAQIECBAgQIAAAQIEDHhkgAABAgQIECBAgAABAgQIECCQuYABT+YNVD4BAgQIECBAgAABAgQIECBAwIBHBggQIECAAAECBAgQIECAAAECmQsY8GTeQOUTIECAAAECBAgQIECAAAECBAx4ZIAAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIECBAgAABAgQIECBAgAABApkLGPBk3kDlEyBAgAABAgQIECBAgAABAgQMeGSAAAECBAgQIECAAAECBAgQIJC5gAFP5g1UPgECBAgQIECAAAECBAgQIEDAgEcGCBAgQIAAAQIECBAgQIAAAQKZCxjwZN5A5RMgQIAAAQIECBAgQIAAAQIEDHhkgAABAgQIECBAgAABAgQIECCQuYABT+YNVD4BAgQIECBAgAABAgQIECBAwIBHBggQIECAAAECBAgQIECAAAECmQsY8GTeQOUTIECAAAECBAgQIECAAAECBAx4ZIAAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIECBAgAABAgQIECBAgAABApkLGPBk3kDlEyBAgAABAgQIECBAgAABAgQMeGSAAAECBAgQIECAAAECBAgQIJC5gAFP5g1UPgECBAgQIECAAAECBAgQIEDAgEcGCBAgQIAAAQIECBAgQIAAAQKZCxjwZN5A5RMgQIAAAQIECBAgQIAAAQIEDHhkgAABAgQIECBAgAABAgQIECCQuYABT+YNVD4BAgQIECBAgAABAgQIECBAwIBHBggQIECAAAECBAgQIECAAAECmQsY8GTeQOUTIECAAAECBAgQIECAAAECBAx4ZIAAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIECBAgAABAgQIECBAgAABApkLGPBk3kDlEyBAgAABAgQIECBAgAABAgQMeGSAAAECBAgQIECAAAECBAgQIJC5gAFP5g1UPgECBAgQIECAAAECBAgQIEDAgEcGCBAgQIAAAQIECBAgQIAAAQKZCxjwZN5A5RMgQIAAAQIECBAgQIAAAQIEDHhkgAABAgQIECBAgAABAgQIECCQuYABT+YNVD4BAgQIECBAgAABAgQIECBAwIBHBggQIECAAAECBAgQIECAAAECmQsY8GTeQOUTIECAAAECBAgQIECAAAECBAx4ZIAAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIECBAgAABAgQIECBAgAABApkLGPBk3kDlEyBAgAABAgQIECBAgAABAgQMeGSAAAECBAgQIECAAAECBAgQIJC5gAFP5g1UPgECBAgQIECAAAECBAgQIEDAgEcGCBAgQIAAAQIECBAgQIAAAQKZCxjwZN5A5RMgQIAAAQIECBAgQIAAAQIEDHhkgAABAgQIECBAgAABAgQIECCQuYABT+YNVD4BAgQIECBAgAABAgQIECBAwIBHBggQIECAAAECBAgQIECAAAECmQsY8GTeQOUTIECAAAECBAgQIECAAAECBAx4ZIAAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIECBAgAABAgQIECBAgAABApkLGPBk3kDlEyBAgAABAgQIECBAgAABAgQMeGSAAAECBAgQIECAAAECBAgQIJC5gAFP5g1UPgECBAgQIECAAAECBAgQIEDAgEcGCBAgQIAAAQIECBAgQIAAAQKZCxjwZN5A5RMgQIAAAQIECBAgQIAAAQIEDHhkgAABAgQIECBAgAABAgQIECCQuYABT+YNVD4BAgQIECBAgAABAgQIECBAwIBHBggQIECAAAECBAgQIECAAAECmQsY8GTeQOUTIECAAAECBAgQIECAAAECBAx4ZIAAAQIECBAgQIAAAQIECBAgkLmAAU/mDVQ+AQIECBAgQIAAAQIECBAgQMCARwYIlExg/4GZiKGIrZPjJatMOTkLyFXO3Stv7XJV3t7kXJlc5dy98tYuV+XtjcoIEOifgAFP/yytRKAvAi5A+sJokSYBuRKJFAJylULVmnIlAykE5CqFqjUJECibgAFP2TqinsoLuACpfASSAMhVEtbKLypXlY9AEgC5SsJa+UXlqvIRAECgEgIGPJVos5PMScAFSE7dyqdWucqnVzlVKlc5dSufWuUqn17lVKlc5dQttRIg0KuAAU+vcvYjkEjABUgi2IovK1cVD0Ci05erRLAVX1auKh6ARKcvV4lgLUuAQKkEDHhK1Q7FEIhwASIFKQTkKoWqNeVKBlIIyFUKVWvKlQwQIFAFAQOeKnTZOWYl4AIkq3ZlU6xcZdOqrAqVq6zalU2xcpVNq7IqVK6yapdiCRDoUcCAp0c4uxFIJeACJJVstdeVq2r3P9XZy1Uq2WqvK1fV7n+qs5erVLLWJUCgTAIGPGXqhloIhJdoCUEagX5c2P5gz0xc/6274gvf/Unsn56PkeGhGB4eqv04MjQUQ8Ox9LWhoRgditr3ip8vbXfoe8W29e2KH4uPYt/iZ0NDBz8fWv3zpS0OfX9pv4NfK+po+ry27cH1ip/Uv7/W8Zb2WVzatvbf0gHr+zQeo3HNpf1WHqPTYy4fa7nWpYMun9uK86rXcmibQ+e1tEDj54d8IoYWG9Y8eGKHfA6eb8P+9RoOnfOhHk0dmKn1buvkeOtjLtbdDh1zYnQ4TcitOjAC/fj9amAwnEjfBOSqb5QWIkCgxAIGPCVujtKqKeACpJp9T33Wvebqy9/bE5//t7vi+m/fFTf/+ECtzON2TMQx28f7VvJCMQSIiMXFpZ8UPxz8Uu2TYsyy/LXa54e2ad6n+Ly278E1ap8X84iGz+vHqB+zcb2l4zXU0PD5wWUP1nmophXHrB1rZQ0zcwt9s7JQxPjo8IqBW22AtjxIWjlgKxq/2sCtNhrrYPC3tF3DkG+x6fOmoV7j9q3Xry3QchDZWFPtmE0DskODxqWBWePQrfHz2uoNg8LGz5e2axoc1j5fGmgu7bfy+41faz7moZoPHyweNmg8GODGGlqd0+z8fK3PR22diC0TI7F1fCSOnByNYjh4RO3z0ThiYji2jI34JUGgY4Fe/xzs+AA2JEAgK4Gp6el4x8WX1Gp+1YXnx+TExIbVf+VV18YnLr8yXv+aX4+TT7pPX49rwNNXTosRWL+AC5D1G1rhcIFOc7XrwFx8/t9+Ep+r3alzdxyYWfqL1un33R6Pvf894pGnHBUn33ML4g0UmD44IFoach2cVA3Vh1CLDcOvpcHYwTlZw88PbbP0vZWf19c8tO/S92tbFocbavq8Yf+pA7O170+Mj61xvNY1HRq6LZ1XfahXH5gdqmH1odtSzU2DwabPDxv6HTzWYm3yt7T/Crf6/msN+locY9mrYc0l7dbHaD5m7fODs8DGmpr7U7NanoAeXL+hJ0uuzblY2cN2GVh5zKGm/rRev97PJdSV23SSu+VjDkXMzy3EzPxCTM0uxv7Z+dg3PV/7vajVRzHkKYY9xdBn68FhUO3HsZHa58ftmIwHHbdtA3/FOlRZBaamZ2sDzMnxsbKWqK5MBc647/ZMK++87Lt37Y43vfWP4rbb72y503kvfF6ce87ZnS9Ygi2LIcv3b7sjzj/vBVEf9pz+0FMPO4/6ds999jMOMzjyyG0thzStvM44/bQVg6TG4/eTw4Cnn5rWItAHgU7/It6HQ1miQgJr5eobd+ytDXWK/79+296ayv3vvTUedcpR8ehiqHPyjgpJOdVuBPx+1Y2WbTsVWC1XxZBn38xCHJidqw19pmYXYu/UXOyfma+9bLQYBk3NzMee4mvTxdcXYt/MXMw3TMQah2Or1VMfGq5Vb/M6DTO3pd1aHOjgPVLLy7aqpd06h32/xaFab9PqqyvPsN05tXI5vN7D1Zq3aV7n4Ky1qZg1Pz1I3N05LRw8weKlw/WPTs5pI/vUnJvD7br3Xdrj0DmvEs9Dd84ePMRhfWr1C6KpwNa9XLlRL5kp+52w1/zW4zr97W0gtqsPL877hefG6Q87LctzKs7hD9/9/njJi56/fAdNMXC58atfWzGEqQ9+zn3yE+Pkk+5bG/A0nveNX7kp3vL298TrXv2yZYtWXyuQivWLj/ogrFj7A396aTzr6U/p6108BjxZRlLRgyzgL0yD3N3NO7fGXBV/SSruzvmHf70rPv9vd8dP9s3GtonReMQpO+Ix979H/Pv73yOOPsK/cG5et/I5st+v8ulVTpXKVU7dyqdWucqnVyott0CrAc/Nt9wab37bu2LPnqV/KHzy2WfW7oypDzZ2XnpZ7eeNd7G0WueSnR+JE084rjYEqQ9cjtiyJT73j19YXrM+QCnWa7yDpvmumcahS7NoscaVV39mxTCnOId3XnxJvPLC85cHLsXXPvihj8ZvvOKC2hLNA57ia8VaOz/88XjDay+KycmJ2su+Wt0J1KqrzUOffnTegKcfitYg0EcBFyB9xLTUssDde6fiU1/+YfzzLbvihlt2177+kOOPiEedco/aXToPPfFIWgS6FvD7VddkduhAQK46QLJJ1wJy1TWZHUogMLz7lk2pYmH7Saset3kw03iXS3FHT/H5lX97TZz71CfFN7757eXhx1E7tkcxwPnRXXfVBitTU9OHDUyaBzzFYKj57pg/fv/O5ZdFFQOY4njHHnPv2lrnPOms2nCocTBTHLf5o9VgpdXLtBpfRrXanUuNXz9qx47DhkRrNbDVoGm9DTfgWa+g/Qn0WcAFSJ9BK7rc12/fG1+9dXfccMuu+PKte2Lf9FwcuWU0/uMDjq7dpfPIU3bU7trxQWA9An6/Wo+efVcTkCvZSCEgVylUrZlaYOufb87Lv/b/0vUdD3jqA476cKVxx2JgU3zU7+ZpvEtmx47tbQc8zS+Zal6vfqzGu2iKgU7z0Kn5ZIp1Hv2Ihx/2ErPGgUuxT3E3TvHyrGJwtdqAp/FYxYCnfsdPUUfzXUXNzyoqPC6/4tPx0l95Yd8e8mzAk/pXpfUJdCngAqRLMJvXHkZaPDvny7fuji/fsituun1v7TkUx24fj4ffZ3s87KSj4oH3moz7Hj259HbWPgj0ScDvV32CtMwKAbkSiBQCcpVC1ZqpBXK4g6cwaH6JVv2um8Y7cortGp990+uAp/4Srkb7xpdtNX59tZdprTbgaayvWKdx+LKeO3hWe4izAc86fwWt9qTqosFXX3vditUbp2vFfq1eN7jOcuxOoKWACxDBaCdwYHa+dldOMcz58q274ht37Iu5+cXau1s9/L7ba/+fft+j4l7bDj1HR67aqfp+LwJy1YuafdoJyFU7Id/vRUCuelGzD4HDBdo9ZLnxbpqPf/JTtQU24g6e5mfqrNW7tZ59Ux9K1fevPxR5tfPu5Bk8Bjx9/pXUONFrfOBT/TCr3epVfL/5dq+1tu1z2ZarqIALkIo2fo3T3j01FzcWz8753q74yvf2xL/+cF8U7wLywGOPWLpD5+BQ58g1XnIlV3KVQkCuUqhaU65kIIWAXKVQtWYVBZoHHcXn1372+vi5n3lajaPx78833/K9aHxmTuMzeIptGx9IXL8L6Oefde6KhywXz+uZnJhYXrtxveJYxUf9Ha4aXyZW/16rd/pa69k3xff+6n9dGVuP2BIveM7PLj9wudWAp9N30VptwOMhy+v8FbTWHTyNk8XGwzTfVtY88FlnSXYncJiAC5D1h6L5rXSX30K3zVvp1t9Cdf0V9G+Fu/fPxS0/PhATo8PxkOO31YY5Z5y0I0494cja1zr9kKtOpWzXjYBcdaNl204F5KpTKdt1IyBX3WjZlsDqAqs9ZPmGG5eGLY3vbFV8vtarYRpf2lW8w1bxjlkP+Kn7rTrgaV5vrXfROuH4Y2vvbNXqIcut3ia9fsb18zvmmHuteJet5ufptDrX5jVuu/3OZcjm5+94m/Q+/Crr9CVadfxWk7ZWb5/Wh9IsQWBZoCoXIMXQZWp2ofb/9NzSz6fnis/nY3p2IQ4Unxc/P/i1YmgzNVf/2mLtewdmiu3nYt/MQhTr7ZsuvjbfNk3FYGR8dCgmx0ZqQ5Lix8nx4RgdGorh4aEYGR6q3SEzOjwUQ8Ox/PnIUMPPi22Go7Zdsf3IwR/rn7ctosMNtk6MxGknbo/TTtjW4R6tN6tKrtaFZOeuBeSqazI7dCAgVx0g2aRrAbnqmswOBAZaYLXZwEaddKrjV+ohy50g1qeIL7/gvHjwgx6w4snZRbObBzyzc+3/MrlRIXGcwRCYnp6LGIqYGM/jHY6Klw/tPjAXe4sfD/58T+3H2dhV+/p87J6arW1TfH/PVDHMWf3XzfjocEyMDsXE6EhMjh38cbwYxAzFRG0gMxRbRkeWfz45PhqTY8MxMTYck7WvDy39WKxT/9r4ofWK71XxI7dcVbFHOZ6zXOXYtfLXLFfl71GOFcpVjl3Lo+axil5b5tGd1aus38xRbNH4MrCNOK9iLvGJy69cfrv3fh7TgKeFZv1lWWef9bgVrwtsNeDZtedAP/thLQIxv7BQUxgpbg/ZwI/ijpliMLNnemkoUwxi6j8vhjXFz4vv750uBjbztYFO8fPmj6O2jsb2ydE4cmKk9rbcxVtx75gciW1bxpa+NjkaR0yMLg9xioFMbRhT3EnTxUuONpBmIA61WbkaCDwnsaqAXAlHCgG5SqFqTbmSgVQCO47ckmpp6xLoWsCAZ40BT/HEbM/g6TpTdlinQD9vIf7uj/fH9358IHYVd9EcmI3d+2drd9PsOTAfu6dnY9f+udhzYDZ+sn/usKqPnByJ7VvGohjYbJsYi+1bioHNWOw4+P/2yZHYsXUstk0WA52l728Zq+bdMets+Ybs3s9cbUjBDpKFgFxl0absipSr7FqWRcFylUWbFEmAwDoFKj/gaX7qd/NLsLyL1joTZveuBfpxAfL9n0zF//zMd+Pvv3VXTI6P1O6gObI2hBmtDW2KYUwxlCmGNdu3jkUxrKl9vRjWbBmt3WXjY7AE+pGrwRJxNv0QkKt+KFqjWUCuZCKFgFylULUmAQJlE6jEgKfxbdLrDXjdq18WxVum1V97V3/qd/H9+vfq26715O+yNVQ9+Qus5wLk7gNz8afX3RxXfuUH8eSH3Cte+sRT4h5bx/JHcQbrFlhPrtZ9cAsMrIBcDWxrN/XE5GpT+Qf24HI1sK11YgQINAhUYsCj4wRyEujlAuTA7Hx87PO3xV9+4bZ40LFb4zee+oA46WivB86p76lr7SVXqWuyfv4CcpV/D8t4BnJVxq7kX5Nc5d9DZ0CAQHsBA572RrYgsKEC3VyAzC8sxl/feGfs/NwtcdTW8fi1s0+Jx9zvqA2t18HyEOgmV3mckSrLICBXZejC4NUgV4PX0zKckVyVoQtqIEAgtYABT2ph6xPoUqDTC5DPfuPH8YHP3hz7Z+bjV848OZ7+sGNieKjLg9m8MgKd5qoyIE60LwJy1RdGizQJyJVIpBCQqxSq1iRAoGwCBjxl64h6Ki/Q7gLkq9/fE3/8v78TN/94f/ynR58Qz3/sid69qvKpaQ/QLlftV7AFgcMF5EoqUgjIVQpVa8qVDBDYeIHiHamLj/PPe0HbgxfPvb3xq1+LV114fkxOTLTdvtig/qzd5mfodrTzOjYq3qjpTW/9ozj1px/U0bmt41Bd72rA0zWZHQikFVjtAuSWuw7E+679bnz+334ST33oveOlT/AA5bSdGKzVXdgOVj/LcjZyVZZODFYdcjVY/SzL2chVWTqhjhwF6gON226/s2X5573weXHuOWcf9r2UA56ipj989/vjJS96fpx80n1qw56dH/54vOG1F8VRO7Yv19K43d27dsVb3v6eFXWecfppLYdKxbtrv/lt74o9e/Yub//ks89cHug0H78sfTXgWWcnrvjKD+Kko7fGA4/dGhOjw+tcze4EIpovQH60dzb+7O9vjiu+/IN45Mk74hXn3N8DlAWlawEXtl2T2aEDAbnqAMkmXQvIVddkduhAQK46QLIJgQ4E6sOe837hubV3pe7XR7d38BTbf/+2O1YMXIq7aprrKgY/V179mdoQ5xvf/PZhQ6BiCPW1f/nmisFQsfYnLr8yXv+aX68Nj+ofxbaPfsTDl8+7WPv/fPHLpbqLx4BnnYn85Uu+FMWdFcXH/e+9NR5wzBHx4OOPjAcdty0ecIyhzzp5K7l7/QJkcXg4/uL6W+Nj/3RbnHTPLfHy/+d+8ahTPEC5kqHow0m7sO0DoiUOE5AroUghIFcpVK0pVzJAoD8CrQY8zXe71O90abyDp77fmf/hMXHFVdfW7oxpvHumecCz2pClOIup6el4x8WXxLlPfuKKIVOrO4aKr514wnG1O4xWu8unVZ2dDLCKc3rfn/x5/NqLf2nFXUP9ke5tFQOe3txW7FW8RfU37tgX37xjb3zj4P+3/WSqts3J99wSDz5uW23o88Bjt7nTpw/e3S4xNbsQe6fnYs/UXOydmo/dU7Oxd3o+9h6Yi70zczE8NFR7OPHIcPHjUIwe/HG4+HF4KEbq3xuOGImh2nZDxddXfO/gvkP170VtrZFin4PrjRTHqf+8tn/9exH17xV3gRUXIP/fDXfGR//p9to25z/hlHjmw4/p9rRtT2CFgAtbgUghIFcpVK0pVzKQQkCuUqhaM7XArXct/Z1yoz/uc/TkqodsHvA0D1uKz6/822vi3Kc+Kf7io5+orVM8g6e+3zHH3Kt2N03xUQxpTn/oqbXhS+OAp7jTpn7XTavn8aw2WGke4HT6Mq7G/W6+5XstX+rVCmS1QdNG96vxeAY8ifTrQ59i4PP12/bEt3+wL+pDn/qdPsVdPsXgZ607fYrBxP6Zhdg/Mxf7pxdiam5pMLF/diH2T8/Fvpn52DdVbDNf+/mB4v/Z+RhajBg6OLhYGio0fF4MIWr/Lw0YijdeWvr+0qChvl/tx+GV+xVDi6Xtl763NBxZuV2x36F1l45d269ew8F66l9bWmMxhuNQTcXG9f1W1H5wQLJvem55SFMMbJaGN8UQZz72Ts/GngPzsWd6Ln6ybzZRh9MuOzYyHC947Inxnx97ggcop6WuzOoubCvT6g09UbnaUO7KHEyuKtPqDT1RudpQbgfrk8CT/uD6Pq3U3TLX/NbjOh7w1Ac35zzprMOew9PuzpjGu2vqA56zz3xcfOyvLj/sWTqNBRV3DF1+xafjpb/ywhUPZG4euDS+PKsYFK12B0+x3gc/9NH4jVdcEMWAp3G41Hx3UvMDnZtfttWddP+3NuDpv+mqKxaDl3+5fekun6/fvje+fefeuP3u6dr2xdBndGQ49tUGOUuDmuLOk1Yf2yZG44iJ4dgyPhrbJkdK8dbYC4sRi4uLsfRjxMLC0s8XFhdrn88f/HEhFmvfK75W377YpnH/hYVD+xXbF9vOzK20KO502TI+HFsnRmPr2EhsmxiJLeNL/x8xMRJbx0dq3zti+cfh2DY5Whtelf1jano27nv0ZJx49BFlL1V9GQm4sM2oWRmVKlcZNSujUuUqo2ZlVKpcZdQspS4L5HAHT1HsakOQbgc8Oy+9rHbuqz20uQ6z2oCn+H7js3laPTOn1YOYO7mDZ7VnDxnw+AW7QqC48+Zf7iiGPftqw5Ct44eGN8VwojawqA0ploYWHuQ8+AFyATL4Pd6MM5SrzVAf/GPK1eD3eDPOUK42Q309F9XlAAAgAElEQVTwjylXg99jZ7gxAu0estw4LPn4Jz9VK6rxJVqNz7ZpvoPnqms+G//1ogvjTy/9y8Oer9N4dms9+6Z+N85LXvSC+MhffXLF83HW8wweA56NyZejEBg4ARcgA9fSUpyQXJWiDQNXhFwNXEtLcUJyVYo2DFwRcjVwLXVCmyTQPOgoPr/2s9fHz/3M02oVrWfAc+NXv1Z7Ps/U1HS0ekes+imv9eyb+vfudfTRy8Ol+n6tBjydvotWqwGPhyxvUggdlkBOAi5AcupWPrXKVT69yqlSucqpW/nUKlf59CqnSuUqp26ptcwCqz1k+YYbb6qVfeSR25bfXrzbl2jVBzzF83LqL/t6+QXntXw79ua3SW80K75XvNyr+Xk5xYDnLW9/zwrexnfyavxG88vOiu+1Ws/bpJc5rWojUAIBFyAlaMIAliBXA9jUEpySXJWgCQNYglwNYFNLcEpyVYImKIFAHwWa3yGrj0t3tNRmH3+1Ij1kuaP22YjAxgm4ANk46yodSa6q1O2NO1e52jjrKh1JrqrU7Y07V7naOGtHIrBRAvU7cprvrEl9/PpdTKf+9INqzxcq04cBT5m6oRYCEeECRAxSCMhVClVrypUMpBCQqxSq1pQrGSBAoAoCBjxV6LJzzErABUhW7cqmWLnKplVZFSpXWbUrm2LlKptWZVWoXGXVLsUSINCjgAFPj3B2I5BKwAVIKtlqrytX1e5/qrOXq1Sy1V5Xrqrd/1RnL1epZK1LgECZBAx4ytQNtRDwEi0ZSCTgwjYRbMWXlauKByDR6ctVItiKLytXFQ+A0ydQEQEDnoo02mnmI+ACJJ9e5VSpXOXUrXxqlat8epVTpXKVU7fyqVWu8umVSgkQ6F3AgKd3O3sSSCLgAiQJa+UXlavKRyAJgFwlYa38onJV+QgkAZCrJKwWJUCgZAIGPCVriHIIuACRgRQCcpVC1ZpyJQMpBOQqhao15UoGCBCogoABTxW67ByzEnABklW7silWrrJpVVaFylVW7cqmWLnKplVZFSpXWbVLsQQI9ChgwNMjnN0IpBJwAZJKttrrylW1+5/q7OUqlWy115Wravc/1dnLVSpZ6xIgUCYBA54ydUMtBLyLlgwkEnBhmwi24svKVcUDkOj05SoRbMWXlauKB8DpE6iIgAFPRRrtNPMRcAGST69yqlSucupWPrXKVT69yqlSucqpW/nUKlf59EqlBAj0LmDA07udPQkkEXABkoS18ovKVeUjkARArpKwVn5Ruap8BJIAyFUSVosSIFAyAQOekjVEOQRcgMhACgG5SqFqTbmSgRQCcpVC1ZpyJQMECFRBwICnCl12jlkJuADJql3ZFCtX2bQqq0LlKqt2ZVOsXGXTqqwKlaus2qVYAgR6FDDg6RHObgRSCbgASSVb7XXlqtr9T3X2cpVKttrrylW1+5/q7OUqlax1CRAok4ABT5m6oRYC3kVLBhIJuLBNBFvxZeWq4gFIdPpylQi24svKVcUD4PQJVETAgKcijXaa+Qi4AMmnVzlVKlc5dSufWuUqn17lVKlc5dStfGqVq3x6pVICBHoXMODp3c6eBJIIuABJwlr5ReWq8hFIAiBXSVgrv6hcVT4CSQDkKgmrRQkQKJmAAU/JGqIcAi5AZCCFgFylULWmXMlACgG5SqFqTbmSAQIEqiBgwFOFLjvHrARcgGTVrmyKlatsWpVVoXKVVbuyKVausmlVVoXKVVbtUiwBAj0KGPD0CGc3AqkEXICkkq32unJV7f6nOnu5SiVb7XXlqtr9T3X2cpVK1roECJRJwICnTN1QCwHvoiUDiQRc2CaCrfiyclXxACQ6fblKBFvxZeWq4gFw+gQqImDAU5FGO818BFyA5NOrnCqVq5y6lU+tcpVPr3KqVK5y6lY+tcpVPr1SKQECvQsY8PRuZ08CSQRcgCRhrfyiclX5CCQBkKskrJVfVK4qH4EkAHKVhNWiBAiUTMCAp2QNUQ4BFyAykEJArlKoWlOuZCCFgFylULWmXMkAAQJVEDDgqUKXnWNWAi5AsmpXNsXKVTatyqpQucqqXdkUK1fZtCqrQuUqq3YplgCBHgUMeHqEsxuBVAIuQFLJVntduap2/1OdvVylkq32unJV7f6nOnu5SiVrXQIEyiRgwFOmbqiFgHfRkoFEAi5sE8FWfFm5qngAEp2+XCWCrfiyclXxADh9AhURMOCpSKOdZj4CLkDy6VVOlcpVTt3Kp1a5yqdXOVUqVzl1K59a5SqfXqmUAIHeBQx4erezJ4EkAi5AkrBWflG5qnwEkgDIVRLWyi8qV5WPQBIAuUrCalECBEomYMBTsoYoh4ALEBlIISBXKVStKVcykEJArlKoWlOuZIAAgSoIGPBUocvOMSsBFyBZtSubYuUqm1ZlVahcZdWubIqVq2xalVWhcpVVuxRLgECPAgY8PcLZjUAqARcgqWSrva5cVbv/qc5erlLJVntduap2/1OdvVylkrUuAQJlEjDgKVM31ELAu2jJQCIBF7aJYCu+rFxVPACJTl+uEsFWfFm5qngAnD6BiggY8FSk0U4zHwEXIPn0KqdK5SqnbuVTq1zl06ucKpWrnLqVT61ylU+vVEqAQO8CBjy929mTQBIBFyBJWCu/qFxVPgJJAOQqCWvlF5WrykcgCYBcJWG1KAECJRMw4ClZQ5RDwAWIDKQQkKsUqtaUKxlIISBXKVStKVcyQIBAFQQMeKrQZeeYlYALkKzalU2xcpVNq7IqVK6yalc2xcpVNq3KqlC5yqpdiiVAoEcBA54e4exGIJWAC5BUstVeV66q3f9UZy9XqWSrva5cVbv/qc5erlLJWpcAgTIJVGrAc+VV18b3b7sjzj/vBSt6cPeu3fGmt/5R3Hb7nbWvv+7VL4vTH3ba8jbFfjsvvaz2+RmnnxavuvD8mJyYKFMf1TJAAi5ABqiZJToVuSpRMwaoFLkaoGaW6FTkqkTNGKBS5GqAmulUCBBYVaASA54bv3JTvOXt76khPPnsM1cMeKamp+MdF18Spz/01Dj3nLPj5ltujXdefEm88sLz4+ST7hPFvjs//PF4w2sviqN2bI9Ldn6ktk7zkEjGCPRLwAVIvySt0yggV/KQQkCuUqhaU65kIIWAXKVQtSYBAmUTqMSAp47e6g6eYqDzwQ99NH7jFRfUBjjNA59ioHPiCcfVhj/FR/PAp2wNVU/+Ai5A8u9hGc9ArsrYlfxrkqv8e1jGM5CrMnYl/5rkKv8eOgMCBNoLVH7A02pgU79L5xef//Mr7u4pOJvv8FlYWGyvbAsCXQhMTc1GDEVMTox1sZdNCawtIFcSkkJArlKoWlOuZCCFgFylULVmITA8PASCQGkEDHi+clNcefVnVjxXp3nAc+6Tn7j8TJ7mAc9du/aVppkKGQyBhcWloeHwkD8sBqOj5TgLuSpHHwatCrkatI6W43zkqhx9GLQq5GrQOlqe8zl6xxHlKUYllRcw4Gl6xk6RiG7u4Kl8ggD0XcAtxH0ntWBEyJUYpBCQqxSq1pQrGUghIFcpVK1JgEDZBCo/4PEMnrJFUj0uQGQghYBcpVC1plzJQAoBuUqhak25kgECBKogUPkBj3fRqkLM8zpHFyB59SuXauUql07lVadc5dWvXKqVq1w6lVedcpVXv1RLgEBvApUY8DS+TXqd6XWvftnyc3Xu3rU73vTWP4rbbr+z9u3G7xWfF+++tfPSy2rfO+P001Y8r6c3dnsRWF3ABYh0pBCQqxSq1pQrGUghIFcpVK0pVzJAgEAVBCox4KlCI53j4Ai4ABmcXpbpTOSqTN0YnFrkanB6WaYzkasydWNwapGrwemlMyFAYHUBAx7pIFAyARcgJWvIgJQjVwPSyJKdhlyVrCEDUo5cDUgjS3YaclWyhiiHAIEkAgY8SVgtSqB3ARcgvdvZc3UBuZKOFAJylULVmnIlAykE5CqFqjUJECibgAFP2TqinsoLuACpfASSAMhVEtbKLypXlY9AEgC5SsJa+UXlqvIRAECgEgIGPJVos5PMScAFSE7dyqdWucqnVzlVKlc5dSufWuUqn17lVKlc5dQttRIg0KuAAU+vcvYjkEjABUgi2IovK1cVD0Ci05erRLAVX1auKh6ARKcvV4lgLUuAQKkEDHhK1Q7FEIhwASIFKQTkKoWqNeVKBlIIyFUKVWvKlQwQIFAFAQOeKnTZOWYl4AIkq3ZlU6xcZdOqrAqVq6zalU2xcpVNq7IqVK6yapdiCRDoUcCAp0c4uxFIJeACJJVstdeVq2r3P9XZy1Uq2WqvK1fV7n+qs5erVLLWJUCgTAIGPGXqhloIhJdoCUEaARe2aVyrvqpcVT0Bac5frtK4Vn1Vuap6Apw/gWoIGPBUo8/OMiMBFyAZNSujUuUqo2ZlVKpcZdSsjEqVq4yalVGpcpVRs5RKgEDPAgY8PdPZkUAaARcgaVyrvqpcVT0Bac5frtK4Vn1Vuap6AtKcv1ylcbUqAQLlEjDgKVc/VEPAu2jJQBIBF7ZJWCu/qFxVPgJJAOQqCWvlF5WrykcAAIFKCBjwVKLNTjInARcgOXUrn1rlKp9e5VSpXOXUrXxqlat8epVTpXKVU7fUSoBArwIGPL3K2Y9AIgEXIIlgK76sXFU8AIlOX64SwVZ8WbmqeAASnb5cJYK1LAECpRIw4ClVOxRDwLtoyUAaARe2aVyrvqpcVT0Bac5frtK4Vn1Vuap6Apw/gWoIGPBUo8/OMiMBFyAZNSujUuUqo2ZlVKpcZdSsjEqVq4yalVGpcpVRs5RKgEDPAgY8PdPZkUAaARcgaVyrvqpcVT0Bac5frtK4Vn1Vuap6AtKcv1ylcbUqAQLlEjDgKVc/VEPAu2jJQBIBF7ZJWCu/qFxVPgJJAOQqCWvlF5WrykcAAIFKCBjwVKLNTjInARcgOXUrn1rlKp9e5VSpXOXUrXxqlat8epVTpXKVU7fUSoBArwIGPL3K2Y9AIgEXIIlgK76sXFU8AIlOX64SwVZ8WbmqeAASnb5cJYK1LAECpRIw4ClVOxRDwLtoyUAaARe2aVyrvqpcVT0Bac5frtK4Vn1Vuap6Apw/gWoIGPBUo8/OMiMBFyAZNSujUuUqo2ZlVKpcZdSsjEqVq4yalVGpcpVRs5RKgEDPAgY8PdPZkUAaARcgaVyrvqpcVT0Bac5frtK4Vn1Vuap6AtKcv1ylcbUqAQLlEjDgKVc/VEPAu2jJQBIBF7ZJWCu/qFxVPgJJAOQqCWvlF5WrykcAAIFKCBjwVKLNTjInARcgOXUrn1rlKp9e5VSpXOXUrXxqlat8epVTpXKVU7fUSoBArwIGPL3K2Y9AIgEXIIlgK76sXFU8AIlOX64SwVZ8WbmqeAASnb5cJYK1LAECpRIw4ClVOxRDwLtoyUAaARe2aVyrvqpcVT0Bac5frtK4Vn1Vuap6Apw/gWoIGPBUo8/OMiMBFyAZNSujUuUqo2ZlVKpcZdSsjEqVq4yalVGpcpVRs5RKgEDPAgY8PdPZkUAaARcgaVyrvqpcVT0Bac5frtK4Vn1Vuap6AtKcv1ylcbUqAQLlEjDgKVc/VEPAu2jJQBIBF7ZJWCu/qFxVPgJJAOQqCWvlF5WrykcAAIFKCBjwVKLNTjInARcgOXUrn1rlKp9e5VSpXOXUrXxqlat8epVTpXKVU7fUSoBArwIGPL3K2Y9AIgEXIIlgK76sXFU8AIlOX64SwVZ8WbmqeAASnb5cJYK1LAECpRIw4ClVOxRDwLtoyUAaARe2aVyrvqpcVT0Bac5frtK4Vn1Vuap6Apw/gWoIGPBUo8/OMiMBFyAZNSujUuUqo2ZlVKpcZdSsjEqVq4yalVGpcpVRs5RKgEDPAgY8PdPZkUAaARcgaVyrvqpcVT0Bac5frtK4Vn1Vuap6AtKcv1ylcbUqAQLlEjDgKVc/VEPAu2jJQBIBF7ZJWCu/qFxVPgJJAOQqCWvlF5WrykcAAIFKCBjwVKLNTjIngcUvXxrjt/5djAwtRCwuRizMRywW/y8s/TzmY6j+88avF19bXIih4mvz04dOeXQyFsePjMXx7bE4vi3i4I+LE9sjiv9r3zsyis+LbWJ829K2k/fIiU2tbQRc2IpICgG5SqFqTbmSgRQCcpVC1ZoECJRNwIBnnR0Zuf3zMX/8Y9e5Sv92H/v6R2PsC+9qveDIRMTQUCzGUEQM134exc+LH2v/Dzd8fvjPF5e3Kb5XbFqssdrPi7WXtlls3K5Ppzr3sF+O+eMf06fVyrXM5MeeFosT94jYmmjAsrgYQzP7Ymhuf8Tsvhia3rU6wIrh0BGH+l0uMtV0ILAwv1j75T48fPDXZgf72IRAOwG5aifk+70IyFUvavZpJyBX7YR8v1eB6adc3Ouu9iPQdwEDnnWSbv3Ik2L+3g+Pmce/Pha33Gudq/W++9D+H8b43/9OjNz5xZh74LNjccvRvS9W8j2Hdt8cI7f+Y0w/4wOxsP2UklfbXXmj3/mbGP/7N8Vdz/pETO44rrud17l1bdBTDHxq/x+ImN1b+3nM7o+h2f0RxUCouKPIR5YCs3PF3V8RY6MjWdav6HIKyFU5+5J7VXKVewfLWb9clbMv2Vc1NByzD39x9qfhBAZHwIBnnb0c2vP9mLjuDTG0+3sx+5iLYu7+565zxe53H73lMzH2ud+LmNgW00/4vVi456ndL5LVHosxcc1rYvgn34qpZ34oFid2ZFX9WsVOXvGSmN1ybOz5D2+MrZPjA3NeTmTzBdyavvk9GMQK5GoQu7r55yRXm9+DQaxArgaxq86JAIFmAQOefmRicT7GbvrzGLvxT2L+uEfFzH98QyxOHNWPlddcY2h2b4z94/8bo9/9dMzd72kx+9jfjMWxrcmPW4oDzE3F5JUvjRgei6mnvS9iJP9hyPBd34jJT/1K7HrCO2P2mNMNeEoRtMEpwoXt4PSyTGciV2XqxuDUIleD08synYlclakbaiFAIJWAAU8fZYu/oI9/9r/H0PTumHn8b8f8fc7s4+orlxq584YYv+4NEXNTMfu4/xZzJz0x2bHKuvDQgR/H5F+fF/PHPDxmnvD7ZS2z47rG/+H3YvgHN8VdT/mz2rNS3MHTMZ0NOxBwYdsBkk26FpCrrsns0IGAXHWAZJOuBeSqazI7ECCQoYABT7+bNj8dY1+8OMb+5bKYO+WcmP33xV01R/bvKAtzMfal98XY1z6yNNg4682xuOWe/Vs/s5WG7/52TF55Qcw+5D/H7Bm/mln1h8ot7sba8pfPiJlHvzJ23/eZBjzZdrK8hbuwLW9vcq5MrnLuXnlrl6vy9ibnyuQq5+6pnQCBTgUMeDqV6nK75TtsFudj5sw3xvxxj+5yhcM3H9793Rj/u/8ew7tvjtl/92sxe+oLlt71quIfI7f/U0xcfVHMnPk/Yu6Up2SpMfq1j8T4jR+I/c+7IvbPFu9O5g6eLBtZ4qJd2Ja4ORmXJlcZN6/EpctViZuTcWlylXHzlE6AQMcCBjwdU3W/4Ypn5PzUM2PmMRdFjG7pfqFYjLGvfyzGvvjeWNh2Qsw84c2xcNRP9bDO4O4y+vWPxvgXL46pp1wcC/d+aGYnuhhb/urnYv6+Z8bMY14dLkAya18m5cpVJo3KrEy5yqxhmZQrV5k0KrMy5SqzhimXAIGeBAx4emLrbqfau1xd//sRY1tj5sw31V5a1elH8ZyZ8c++PkZ+cGPMPvi5MfuoV9QeLOzjcIHx698cI7dcF1PP/LNY3HZ8NkQj3/+HmLjm1TH17Mti4cgTDXiy6VxehbqwzatfuVQrV7l0Kq865SqvfuVSrVzl0il1EiCwHgEDnvXodbFvbVBz3Rtj5M5/jtmffl7MPuLCiJGJNVdYHgwNj8bMWW+qvUOXjzUEFudj4qpXxND+H8X00y+JxfHtWXBNXPObMTQ/HVPnvLtWrwuQLNqWXZFylV3LsihYrrJoU3ZFylV2LcuiYLnKok2KJEBgnQIGPOsE7Hb3sW98Isa++MexsOWeMXPW78bC0T992BKNL+2aP/HxMfP418fixI5uD1XJ7Qu7iU+9OGJiR0w99b0Rw6Oldhjad2ds+cTPxfRZb475k59kwFPqbuVdnAvbvPtX1urlqqydybsuucq7f2WtXq7K2hl1ESDQTwEDnn5qdrjW8O7vxfjfvzGKt1WfPfWFMXvGS5cHEcM//EpM/N1vRzGomHnUq2Lugc/qcFWb1QWG9t4ek1e8OOaPf2ztAddl/ijecW30X6+IA8+9PGJo2ICnzM3KvDYXtpk3sKTly1VJG5N5WXKVeQNLWr5clbQxyiJAoK8CBjx95exusbEvfzDGbvxgLOy4X8w8/rdj5LvXxNjXPhwL9zw1Zs78ndrzWHz0JjD8w6/G5N9csPRuYw99UW+LbMBeW/7y3Jh7yH+K2Yf9yvLRXIBsAHwFDyFXFWz6BpyyXG0AcgUPIVcVbPoGnLJcbQCyQxAgsOkCBjyb3ILhH389xq/7HzG859ZaJcVf9Gt39PhYt8Dod6+q2c6c9eaYO/jyp3Uv2scFRr/ztzH+978TB577/8filnsa8PTR1lKHC7iwlYoUAnKVQtWaciUDKQTkKoWqNQkQKJuAAU8ZOjI/HWM3XBLzJz0hw7f4LgPg6jWMfflPYuyrH4qpp15cuzOqTB/FHUYLRxwbM2f+7oqyXICUqUuDU4tcDU4vy3QmclWmbgxOLXI1OL0s05nIVZm6oRYCBFIJGPBExCU7PxJXX3vdCuPzXvi8OPecs2tfu/Kqa2PnpZfVfn7G6afFqy48PyYn1n4HrFQNs273AuN/999i5M4vxdQzd8bi1mO6XyDBHsO7vhOTl78wpp7yx7Fw7CMMeBIYW3KlgAtbiUghIFcpVK0pVzKQQkCuUqhakwCBsgkY8Bwc8BSNOf+8FxzWnxu/clPs/PDH4w2vvSiO2rG9NgxabduyNVc9BwXmZ2Lyb34tYu5ATD/9A7E4tm3Tacb/4S0x/IOvxNTPfviwWlyAbHp7BrIAuRrItm76ScnVprdgIAuQq4Fs66aflFxtegsUQIDABggY8LQZ8BQDnRNPOG75bp7mgc8G9Mgh+iAwNL0rJv/6RbUHV0+f8+6IoZE+rNrbEsU7pG35y2fEzKN+PeYe/BwDnt4Y7dWlgAvbLsFs3pGAXHXEZKMuBeSqSzCbdyQgVx0x2YgAgcwFDHhavESr/vKsqenpeMfFl8TpDz11ecBz8y23xjsvviReeeH5cfJJ98m8/dUqf3j3d2PiUy+N+ZOfEDOPe/2mnfzo1z8a4ze8P/Y/74qI0UkDnk3rRLUO7MK2Wv3eqLOVq42SrtZx5Kpa/d6os5WrjZJ2HAIENlPAgKdJvxjgvPlt74qXX3BePPhBD6gNeM598hPj9IedVtuyecDzo5/s3cz+OXaXApN3fTmO+Yffip885KWx5/6H3z3T5XI9bL4YJ1zzy3HgmEfFTx76ipb7Ly4ufXloqIfl7UJgFQG5Eo0UAnKVQtWaciUDKQTkKoWqNQuBe91j8x//oBME6gIGPC2yUH9Z1tlnPa7tHTwH/y4uURkJjP3rp2L8+t+P6Sf9Qcyd+PgNrXzkts/H5P++KA48+7Lay8VafRyYmokYitgyMb6htTnYYAvI1WD3d7POTq42S36wjytXg93fzTo7udos+cE/rn+THfwe53SGBjxrDHiKd9HyDJ6c4tx5reNfeEeMfvN/xdTTPxALRz2g8x3XueXEtf81hmb31d49a7UPtxCvE9nuLQXkSjBSCMhVClVrypUMpBCQqxSq1iRAoGwClR/w3L1rd1z72evj537mabXeNL8Ey7tolS2yfapncSEmrr4ohu/+16W3T99yzz4tvPoyQ/vujC2f+PmYPut3Y/7kJxnwJBd3gEYBF7bykEJArlKoWlOuZCCFgFylULUmAQJlE6j8gKf+IOUbbrxpuTeve/XLlp+5U3zxyquujZ2XXlb7/hmnnxavuvD8mJyYKFsv1dOtwNyBmPzUiyOGR2Pq3A+0fOBxt0uutf3YDe+L0W/9dRx47uURQ8MGPP3EtVZbARe2bYls0IOAXPWAZpe2AnLVlsgGPQjIVQ9odiFAIDuByg94suuYgvsqMLT/B7Uhz8I9fzqmz/6DNQcv6zrwwlxsueyZMffTz4vZ01+y5lIuQNYlbedVBORKNFIIyFUKVWvKlQykEJCrFKrWJECgbAIGPGXriHo2XGD47m/H5BUvjbkH/VzMPOrXkxx/5DufjonP/W4ceM4n274czAVIkhZUflG5qnwEkgDIVRLWyi8qV5WPQBIAuUrCalECBEomYMBTsoYoZ3MERr7/uZi45jUx87jfjrmfekbfi5j8m1+Nxa33jumz3tx2bRcgbYls0IOAXPWAZpe2AnLVlsgGPQjIVQ9odmkrIFdtiWxAgMAACBjwDEATnUJ/BMa++ucxdsP/jOlz3h3zx/67/iwaEcO7vhOTl7+w9s5ZC8c+ou26LkDaEtmgBwG56gHNLm0F5KotkQ16EJCrHtDs0lZArtoS2YAAgQEQMOAZgCY6hf4JjF/3xhi59XMx/YwPxML2U/qy8Pg/vjWG7/jnmHr20oO62324AGkn5Pu9CMhVL2r2aScgV+2EfL8XAbnqRc0+7QTkqp2Q7xMgMAgCBjyD0EXn0D+BhbmY/Nv/EsXDl6ee+aFYnNixrrWHZvfGlo8/K2Ye8bKYe/BzOlrLBUhHTDbqUkCuugSzeUcCctURk426FJCrLsFs3pGAXHXEZCMCBDIXMODJvIHK77/A0MzumPzrX47FiaNi6mnvixgZ7/kgo/9yWYx/6b2x/3lXdPw27C5Aeua24xoCciUeKQTkKoWqNeVKBlIIyFUKVWsSIFA2AQOesnVEPaUQGN79vZi44vyYP/6RMfOE3++5pslPPi8Wjn9szDz2NztewwVIx1Q27EJArrrAsmnHAnLVMZUNuxCQqy6wbF0VMYMAABT7SURBVNqxgFx1TGVDAgQyFjDgybh5Sk8rMPzDr8bkpy+M2dN+MWbPuKDrgw3f/n9i8upXxtSzLo2FHffreH8XIB1T2bALAbnqAsumHQvIVcdUNuxCQK66wLJpxwJy1TGVDQkQyFjAgCfj5ik9vcDodz8dxYOXZ858Y8yd8pSuDjjxmdfG0MyemHrKe7razwVIV1w27lBArjqEsllXAnLVFZeNOxSQqw6hbNaVgFx1xWVjAgQyFTDgybRxyt44gbEvvTfGvvaRmHrKxbFw74d2dOChAz+uPVx5+qzfjfmTn9TRPvWNXIB0xWXjDgXkqkMom3UlIFddcdm4QwG56hDKZl0JyFVXXDYmQCBTAQOeTBun7I0UWIyJa14Twz/4Skw9889icdvxbQ8+dsP7Y/Rbl8eB53wyYni07faNG7gA6YrLxh0KyFWHUDbrSkCuuuKycYcCctUhlM26EpCrrrhsTIBApgIGPJk2TtkbLDA3FZNXvjRifjqmn35JLI5vX72AhbnYctkzY+4hz43Zh5/fdaEuQLoms0MHAnLVAZJNuhaQq67J7NCBgFx1gGSTrgXkqmsyOxAgkKGAAU+GTVPy5ggUL7uavOLFsbj1mJh66ntXvTNn5LtXxcR1b4wDz708Frfcs+tiXYB0TWaHDgTkqgMkm3QtIFddk9mhAwG56gDJJl0LyFXXZHYgQCBDAQOeDJum5M0TGN793Zj81Itj7j5n1R683Opj8m//SyxOHh3TT/i9ngp1AdITm53aCMiViKQQkKsUqtaUKxlIISBXKVStSYBA2QQMeMrWEfWUXmDk9n+KiasvitkzfjVmH/aiFfUO7/pOTF7+wpg6592xcNwjezoXFyA9sdnJgEcGNkHA71ebgF6BQ8pVBZq8CacoV5uA7pAECGy4gAHPhpM74CAIjH79YzH+hXfGzBN+L+ZOOnv5lMb/8W0xfMc/xdSzL+v5NF2A9ExnxzUE5Eo8UgjIVQpVa8qVDKQQkKsUqtYkQKBsAgY8ZeuIerIRGL/+zTH6nati6mnvi4V7PiRibiq2Xvb0mHnEhTH34Of2fB4uQHqms6MBjwxssIDfrzYYvCKHk6uKNHqDT1OuNhjc4QgQ2BQBA55NYXfQQRGY+PSFMXz3d2LqmTtj5Ht/F+NffG/sf94VEaOTPZ+iC5Ce6exowCMDGyzg96sNBq/I4eSqIo3e4NOUqw0GdzgCBDZFwIBnU9gddFAEhmb3xsQVF0QMDUUsLsT88Y+M2cf85rpOzwXIuvjsvIqAXIlGCgG5SqFqTbmSgRQCcpVC1ZoECJRNwICnbB1RT3YCQ3tvr719+tD0rph61qWxsON+6zoHFyDr4rOzAY8MbKCA3682ELtCh5KrCjV7A09VrjYQ26EIENg0AQOeTaN34EESGP7x12Psi++N6XPete7TcgGybkILtBCQK7FIISBXKVStKVcykEJArlKoWpMAgbIJGPCUrSPqyVdgbmpdz96pn7gLkHwjUObK5arM3cm3NrnKt3dlrlyuytydfGuTq3x7p3ICBDoXMODp3MqWBDZEwAXIhjBX7iByVbmWb8gJy9WGMFfuIHJVuZZvyAnL1YYwOwgBApssYMCzyQ1weALNAi5AZCKFgFylULWmXMlACgG5SqFqTbmSAQIEqiBgwFOFLjvHrARcgGTVrmyKlatsWpVVoXKVVbuyKVausmlVVoXKVVbtUiwBAj0KGPD0CGc3AqkEXICkkq32unJV7f6nOnu5SiVb7XXlqtr9T3X2cpVK1roECJRJwICnTN1QC4GIcAEiBikE5CqFqjXlSgZSCMhVClVrypUMECBQBQEDnip02TlmJeACJKt2ZVOsXGXTqqwKlaus2pVNsXKVTauyKlSusmqXYgkQ6FHAgKdHOLsRSCXgAiSVbLXXlatq9z/V2ctVKtlqrytX1e5/qrOXq1Sy1iVAoEwCBjxl6oZaCBAgQIAAAQIECBAgQIAAAQI9CBjw9IBmFwIECBAgQIAAAQIECBAgQIBAmQQMeMrUDbUQIECAAAECBAgQIECAAAECBHoQMODpAc0uBAgQIECAAAECBAgQIECAAIEyCVR6wDM1PR3vuPiSuOHGm2o9Oe+Fz4tzzzl7uT9379odb3rrH8Vtt99Z+9rrXv2yOP1hp63Zv3b7XHnVtbHz0stqa5xx+mnxqgvPj8mJiTJlQi3rFFgrV83fk6t1Yldo93a/X9Up6tsVn7f7/cXvVxUK0Cqn2kmubvzKTfGWt7+ntsIJxx8bb3jtRXHUju2r4smVXLXL1c233Bpvftu7Ys+evS2vv1oJypVc1QWKa+nv33ZHnH/eC1agtMuIXMnQWgKtcuW6XWZyFKj0gOeSnR+p9az4A6L+h8J5v/Dc2hCn/gv69IeeWhv6FBcj77z4knjlhefHySfdp2Wv2+1TXCTv/PDHly+OG4+fY3jU3FpgrVwVOfv4Jz8Vv/j8n68N9opM/PH7d8brX/PrciVQawqslavm4U4xtG43QPb7lcAVAu1y1fznVjs1uWonVI3vt/tzsPjHs/r1VvP1VyshuapGbtqdZeOw+clnn7liwNMuI3LVTre6318rV67bq5uLnM+8sgOe4hfsH777/fGSFz1/+S/WjRckxUDngx/6aPzGKy6o/Utl8x8c9QvjH9111/K/krfbp1j/xBOOW75LqNsL55yDVpXa2+Wq2aHVhW2RE7mqSmI6O89Oc1X/PaZY9cavfm3FHTxy1Zl1lbZql6tW32/2kasqJaazc22Xq+Z/MHN91ZmrrQ4JtLrTot01uOt2CWonsNqdYY37uW5vp+j7ZRCo7ICn1R05xS/s+l+KvvHNb6+426b+B0PxY/2W0OYL21YDm/rQqLhjo3g5WP2OoGKdTu4KKkNI1NC5QLtcNb8cr9X2ctW5d1W27CRXjQPqxt/L6pmTq6qkpfPzbJerO+/84YqX0RQrN/+ruVx17l2VLdvlqvg9qcjN57/wpdrdq8VH4z+otfqLuOurqqSns/Ns9RfxtTLiur0z16pv1cmAx3V71VOSx/lXesDTfEHRPOC58urPHPYv4I0DnuYWF3+4rLZPfcBz7pOfuPwcHwOePH6RdFNl878gFfu2+st28fVW/2rZ6lhy1U0HBnPbdrm69rPXr3gewWqZa9SRq8HMSjdn1S5XxT90NP6ZVv+Xy3OedNaK59XJVTfqg79tu1zVX55cPI9wz779tefwND8D0fXV4OdkPWe42oDHdft6VO3bbsDjul1GchGo9ICn+Zk63d7B0+oCpPEZO/V/hSp+dAdPLr8k1ldnJ/9y2TjcudfRRx/2kEC5Wl8PBnHvdrn6i49+Iq6+9rrDTn2t5/D4F/FBTEp359QuV80DnrUG1vUjy1V3PRjErdvlqrgzrPEf2DodHLq+GsS09HZOvd7B4/qqN++q7LXWgKc+3HHdXpU05H2elR3wdPIa8XbP4GlufbvX/3oGT96/WDqpvl2uuh3uFNvLVSfyg71NJ7lqFOjkDh65GuzMdHJ27XK12p0Yrd69pn48uepEfrC3aZerte4ebH5XJLka7Kz0ena9PoPHdXuv4tXYb7UBTzfDHdft1chK2c+ysgOeojHrfRet5mcPtHuCv3fRKvsvh/7U102uWh1RrvrTh0Fbpd27HbUb8MjVoCWiP+fTye9X9X+x7OThkv4c7E9fcl9lrVzV3yL95RecV3vJeqs7ePx+lXsC0ta/1ttZr/Xut3KVti+5r95Jrly3597latRf6QFP/UK0eEvh4qP5NeD1i47bbr+z9v3Xvfply8/PqQ+IGt/tqPhau32K3zyK150XH+3exrgaERy8s1wrV/UL2+KZA40fjQ8ubb4AkavBy0gvZ9Tu96tuBzxy1UsXBm+fdrlq/jOt+c9Jv18NXib6cUbtctX4tsStrr/kqh9dGLw1mnPTfG3e7hpcrgYvE/04o7Vy5bq9H8LW2GiBSg94Nhrb8QgQIECAAAECBAgQIECAAAECKQQMeFKoWpMAAQIECBAgQIAAAQIECBAgsIECBjwbiO1QBAgQIECAAAECBAgQIECAAIEUAgY8KVStSYAAAQIECBAgQIAAAQIECBDYQAEDng3EdigCBAgQIECAAAECBAgQIECAQAoBA54UqtYkQIAAAQIECBAgQIAAAQIECGyggAHPBmI7FAECBAgQIECAAAECBAgQIEAghUBWA56p6el4x8WXxA033hSve/XL4vSHnVYzufErN8WVV38mXnXh+TE5MdF3p7t37Y4/fPf74yUven6cfNJ9Ol7/5ltujTe/7V2xZ8/e2j4nHH9svOG1F8VRO7Yvr3HlVdfGzksvq31+xumntTyHS3Z+JE484bg495yzVxy7cd8jj9wWr3/Nr3dVX8cnYkMCBAgQIECAAAECBAgQIECg1AJZDnjudfTR8aO77loehqQa8DQOlHoZoBR13XbHD5YHM8WgprnunR/++PLQp/h+8XH+eS+o/dg4wDnvhc9bMeAp1m7ct/nzUqdOcQQIECBAgAABAgQIECBAgEBfBbIc8Jx95uPi2uuuj3Of/MTaXTzNA57GO2caBzPFwOTGr35txV0yzUOVVrq93sHTvFbzEKb5zpzVhjSt7uBpPpfinN958SXxygvPdxdPX3+JWIwAAQIECBAgQIAAAQIECJRfIMsBTzHYKT7qL8v6xje/vfzzqanpeNNb/yjO+4XnLg9//vj9O2svX9qxY/uKl1p1OrjpdLt27W4cyhTbFi83O/2hpy7fmbPakKbVgKeoqTjPY465V21gde1nr4/v33bH8t0/7WrxfQIECBAgQIAAAQIECBAgQGBwBLId8Dz4QQ+oDUhaDXsaX7pUf5lVfZDSOCzp9KVd/RjwNA9v6nXV70IqItXNgKfYvjiXYp9v/et3opeXkA1OjJ0JAQIECBAgQIAAAQIECBCotkC2A57Gl2bVX7JV3MnSeDdP/YHLqw11/uKjn2j58OLmSKx3wFN/ydjLLzhv+cHQzYOnbgc8xd1AjXfsFMOq+p1K3TwIutrxd/YECBAgQIAAAQIECBAgQGAwBLIe8NSHJI0PXS4GPGvdwVMf1jznZ8+tvazr1178Syve1apVW9cz4Gk13KkfYz3P4Gnet/6SrfpL0wYjns6CAAECBAgQIECAAAECBAgQ6EQg6wFPcYLFnStveft7lt9ivP4MnnOedFbt2Tat7mwp7n65/h+/UHsYcf0dq9bCWm3A0+7Bxu2+3+qhy0UdzTWt9pDlq6757PI7cLmDp5O424YAAQIECBAgQIAAAQIECAymQPYDnvpdPEV7ipdoFS/LWu1dtOotXOuumsY2N75Nev3rZ5x+2vJxWr0rV+P+jW9z3vj11736Zcsv1WrcpnHtYvvm/Zufs1MMfq6+9rra0p7BM5i/QJ0VAQIECBAgQIAAAQIECBDoRCCrAU8nJ7SR2xQDlkc/4uHLw5qNPLZjESBAgAABAgQIECBAgAABAgTqAgY8PWaheNnW+/7kzzt6hk+Ph7AbAQIECBAgQIAAAQIECBAgQKAjAQOejphsRIAAAQIECBAgQIAAAQIECBAor4ABT3l7ozICBAgQIECAAAECBAgQIECAQEcCBjwdMdmIAAECBAgQIECAAAECBAgQIFBeAQOe8vZGZQQIECBAgAABAgQIECBAgACBjgQMeDpishEBAgQIECBAgAABAgQIECBAoLwCBjzl7Y3KCBAgQIAAAQIECBAgQIAAAQIdCRjwdMRkIwIECBAgQIAAAQIECBAgQIBAeQUMeMrbG5URIECAAAECBAgQIECAAAECBDoSMODpiMlGBAgQIECAAAECBAgQIECAAIHyChjwlLc3KiNAgAABAgQIECBAgAABAgQIdCRgwNMRk40IECBAgAABAgQIECBAgAABAuUVMOApb29URoAAAQIECBAgQIAAAQIECBDoSMCApyMmGxEgQIAAAQIECBAgQIAAAQIEyitgwFPe3qiMAAECBAgQIECAAAECBAgQINCRgAFPR0w2IkCAAAECBAgQIECAAAECBAiUV8CAp7y9URkBAgQIECBAgAABAgQIECBAoCMBA56OmGxEgAABAgQIECBAgAABAgQIECivgAFPeXujMgIECBAgQIAAAQIECBAgQIBARwIGPB0x2YgAAQIECBAgQIAAAQIECBAgUF4BA57y9kZlBAgQIECAAAECBAgQIECAAIGOBAx4OmKyEQECBAgQIECAAAECBAgQIECgvAIGPOXtjcoIECBAgAABAgQIECBAgAABAh0JGPB0xGQjAgQIECBAgAABAgQIECBAgEB5BQx4ytsblREgQIAAAQIECBAgQIAAAQIEOhIw4OmIyUYECBAgQIAAAQIECBAgQIAAgfIKGPCUtzcqI0CAAAECBAgQIECAAAECBAh0JGDA0xGTjQgQIECAAAECBAgQIECAAAEC5RUw4Clvb1RGgAABAgQIECBAgAABAgQIEOhIwICnIyYbESBAgAABAgQIECBAgAABAgTKK2DAU97eqIwAAQIECBAgQIAAAQIECBAg0JGAAU9HTDYiQIAAAQIECBAgQIAAAQIECJRXwICnvL1RGQECBAgQIECAAAECBAgQIECgIwEDno6YbESAAAECBAgQIECAAAECBAgQKK+AAU95e6MyAgQIECBAgAABAgQIECBAgEBHAgY8HTHZiAABAgQIECBAgAABAgQIECBQXgEDnvL2RmUECBAgQIAAAQIECBAgQIAAgY4EDHg6YrIRAQIECBAgQIAAAQIECBAgQKC8AgY85e2NyggQIECAAAECBAgQIECAAAECHQkY8HTEZCMCBAgQIECAAAECBAgQIECAQHkFDHjK2xuVESBAgAABAgQIECBAgAABAgQ6EjDg6YjJRgQIECBAgAABAgQIECBAgACB8goY8JS3NyojQIAAAQIECBAgQIAAAQIECHQkYMDTEZONCBAgQIAAAQIECBAgQIAAAQLlFTDgKW9vVEaAAAECBAgQIECAAAECBAgQ6EjAgKcjJhsRIECAAAECBAgQIECAAAECBMorYMBT3t6ojAABAgQIECBAgAABAgQIECDQkYABT0dMNiJAgAABAgQIECBAgAABAgQIlFfAgKe8vVEZAQIECBAgQIAAAQIECBAgQKAjAQOejphsRIAAAQIECBAgQIAAAQIECBAor8D/BeJVoCawo2WCAAAAAElFTkSuQmCC",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df[['Tsource (VDG)', 'Tsink (VDG)']].iplot()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"15"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"waterstorage = WaterStorage(\n",
" name='MyStorage',\n",
" max_power=10,\n",
" min_power=-10,\n",
" roundtrip_eff=0.90,\n",
" energy_density = 50 * 1e-3,\n",
" volume = 1000,\n",
" lifetime = 25,\n",
" temperature = 368, #K\n",
" min_storagelevel = 5,\n",
" # max_storagelevel = 50\n",
" \n",
")\n",
"waterstorage.set_freq('15T')\n",
"waterstorage.set_storagelevel(15)\n",
"waterstorage.storagelevel"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"50.0"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"waterstorage.max_storage_capacity"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def hp_mass_flow (hp_capacity, Tsink, Tref, Cp):\n",
" return hp_capacity /(Cp*(Tsink - Tref)) \n",
"\n",
"def process_mass_flow (demand, Tsink, Tref, Cp):\n",
" return demand /(Cp*(Tsink - Tref)) \n",
"\n",
"def COP_calculation(Tsink, Tsource):\n",
" return Tsink / (Tsink - Tsource)\n",
"\n",
"from numpy.polynomial import Polynomial\n",
"\n",
"def cop_curve(Tsink, Tsource):\n",
" c0 = Tsink / (Tsink - Tsource) \n",
" return Polynomial([c0])\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'name': 'Heatpump',\n",
" 'max_th_power': 40,\n",
" 'min_th_power': 5,\n",
" 'cop_curve': }"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# heatpump = Heatpump(\"heatpump1\", 50, cop_curve, 10)\n",
"# heatpump.set_heat_output(50, Tsource=333, Tsink=413)\n",
"cop_curve(140, 60)\n",
"\n",
"heatpump = Heatpump(\n",
" name='Heatpump',\n",
" max_th_power=40,\n",
" min_th_power=5,\n",
" cop_curve=cop_curve\n",
")\n",
"\n",
"heatpump.__dict__\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5.1625"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"heatpump.get_cop(50, Tsource=333, Tsink=413)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5.400000000000001"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Tsink = 140 #Celcius\n",
"Tsource = 60\n",
"Tref = 0\n",
"hp_capacity = 31 #MW\n",
"demand = 25 #MW\n",
"Cp = 4190 #J/kgK\n",
"MW_to_J_per_s = 1000_000\n",
"hp_capacity *= MW_to_J_per_s\n",
"demand *= MW_to_J_per_s\n",
"efficiency = 0.9\n",
"Tstorage = 95\n",
"\n",
"# charge_mass_flow = hp_mass_flow (hp_capacity, Tsink, Tref, Cp) - process_mass_flow (demand, Tsink, Tref, Cp)\n",
"# charged_heat = (charge_mass_flow * Cp * (Tsink - Tref)) / MW_to_J_per_s\n",
"# charged_heat\n",
"charge_mass_flow = hp_mass_flow (hp_capacity, Tsink, Tref, Cp) - process_mass_flow (demand, Tsink, Tref, Cp)\n",
"def charged_heat (charge_mass_flow, Cp, Tsink, Tref):\n",
" return (charge_mass_flow * Cp * (Tsink - Tref)) / MW_to_J_per_s\n",
"\n",
"\n",
"discharged_heat = charged_heat(charge_mass_flow, Cp, Tsink, Tref) * efficiency #MW\n",
"def discharge_mass_flow (discharged_heat, Cp, Tstorage, Tref):\n",
" return discharged_heat * MW_to_J_per_s /(Cp*(Tstorage - Tref))\n",
"# discharge_mass_flow = discharged_heat * MW_to_J_per_s /(Cp*(Tstorage - Tref))\n",
"# discharge_mass_flow\n",
"# process_mass_flow\n",
"\n",
"def Tsource_calculation(Tstorage, discharge_mass_flow, Tsource, process_mass_flow):\n",
" return (Tstorage * discharge_mass_flow(discharged_heat, Cp, Tstorage, Tref) + Tsource * process_mass_flow)/ (discharge_mass_flow(discharged_heat, Cp, Tstorage, Tref) + process_mass_flow)\n",
" \n",
"\n",
"Tsource_calculation(Tstorage, discharge_mass_flow, Tsource, process_mass_flow (demand, Tsink, Tref, Cp))\n",
"discharged_heat\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"def test_heatpump_and_waterstorage_system(Tsink, Tsource, process_demand_MW, e_price):\n",
" \"\"\"\n",
" 1. Follow a certain logic based on given price:\n",
" - If price is low --> Heatpump at full power, and charge the heatbuffer\n",
" - If price is high --> Discharge the heat buffer, and increase Tsource, which will increase COP\n",
" 2. Above logic should adhere to a couple of constraints:\n",
" - Storage levels\n",
" - Capacity of the heat pump \n",
" - Process demand\n",
" - ....\n",
" 3. This function should contain: \n",
" - Heat pump \n",
" - Water storage\n",
" - Interactions / logic between them\n",
" 4. Output of the function:\n",
" - Power of the heatpump (MWe)\n",
" - \"New\" water storage level\n",
" - (optional) Thermal output of the heatpump\n",
" - (optional) In/outflow from the storage\n",
" \"\"\"\n",
" \n",
" if e_price < 50:\n",
" hp_load = heatpump.max_th_power\n",
" energy_to_storage = hp_load - process_demand_MW\n",
" waterstorage.charge(energy_to_storage)\n",
" new_cl = waterstorage.storagelevel\n",
" if e_price > 100:\n",
" # Tstorage = 95\n",
" energy_from_storage = discharged_heat\n",
" waterstorage.discharge(energy_from_storage)\n",
" new_cl = waterstorage.storagelevel\n",
" def Tsource_calculation(Tstorage, discharge_mass_flow, Tsource, process_mass_flow):\n",
" return (\n",
" (Tstorage * discharge_mass_flow + Tsource * process_mass_flow)\n",
" / (discharge_mass_flow + process_mass_flow)\n",
" )\n",
" new_Tsource = Tsource_calculation(Tstorage, discharge_mass_flow(discharged_heat, Cp, Tstorage, Tref), Tsource, process_mass_flow (demand, Tsink, Tref, Cp))\n",
" new_COP = COP_calculation (Tsink, new_Tsource)\n",
" hp_load = heatpump.set_heat_output(process_demand_MW, Tsink, Tsource) #bu da hemcinin set load assetin funksiyasidir, \n",
" #heatpump da overwrite edilib. men evezinde yazdim ki set_heat_output\n",
" #sen gor hansi funksiya sene lazimdir.\n",
"\n",
" return hp_load, new_cl"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"# hp_load, new_cl = test_heatpump_and_waterstorage_system(\n",
"# Tsink = 140+273, \n",
"# Tsource = 60+273, \n",
"# process_demand_MW = 25, \n",
"# e_price = 30\n",
"# )\n",
"\n",
"# hp_load, new_cl\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"# waterstorage.get_soc (30, 50)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"for i in df.index:\n",
" # df.loc[i, 'MWe'] = test_heatpump_and_waterstorage_system(df.loc[i, 'Tsink (VDG)']+273, df.loc[i, 'Tsource (VDG)']+273, df.loc[i, 'MW (VDG)'], 130)[0][0]\n",
" df.loc[i, 'new_cl'] = test_heatpump_and_waterstorage_system(df.loc[i, 'Tsink (VDG)']+273, df.loc[i, 'Tsource (VDG)']+273, df.loc[i, 'MW (VDG)'], 30)[1]\n"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Tsource (VDG) | \n",
" Tsink (VDG) | \n",
" MW (VDG) | \n",
" Tsource (NDG) | \n",
" Tsink (NDG) | \n",
" MW (NDG) | \n",
" new_cl | \n",
"
\n",
" \n",
" \n",
" \n",
" | 2018-11-01 00:00:00 | \n",
" 64.964783 | \n",
" 142.003109 | \n",
" 0.000000 | \n",
" 19.897433 | \n",
" 147.731814 | \n",
" 0.000000 | \n",
" 28.75 | \n",
"
\n",
" \n",
" | 2018-11-01 00:15:00 | \n",
" 54.578777 | \n",
" 138.960493 | \n",
" 0.000000 | \n",
" 17.950905 | \n",
" 148.138964 | \n",
" 0.000000 | \n",
" 38.75 | \n",
"
\n",
" \n",
" | 2018-11-01 00:30:00 | \n",
" 65.166672 | \n",
" 139.885329 | \n",
" 0.000000 | \n",
" 33.500757 | \n",
" 147.585426 | \n",
" 0.000000 | \n",
" 47.50 | \n",
"
\n",
" \n",
" | 2018-11-01 00:45:00 | \n",
" 65.358078 | \n",
" 139.731901 | \n",
" 0.000000 | \n",
" 42.203876 | \n",
" 147.547612 | \n",
" 0.000000 | \n",
" 47.50 | \n",
"
\n",
" \n",
" | 2018-11-01 01:00:00 | \n",
" 64.947536 | \n",
" 139.577871 | \n",
" 0.000000 | \n",
" 18.702675 | \n",
" 148.260335 | \n",
" 0.000000 | \n",
" 47.50 | \n",
"
\n",
" \n",
" | 2018-11-01 01:15:00 | \n",
" 65.073433 | \n",
" 139.423357 | \n",
" 0.000000 | \n",
" 19.903652 | \n",
" 149.186865 | \n",
" 0.000000 | \n",
" 47.50 | \n",
"
\n",
" \n",
" | 2018-11-01 01:30:00 | \n",
" 47.711559 | \n",
" 140.328730 | \n",
" 0.000000 | \n",
" 19.574467 | \n",
" 147.800016 | \n",
" 0.000000 | \n",
" 47.50 | \n",
"
\n",
" \n",
" | 2018-11-01 01:45:00 | \n",
" 29.525829 | \n",
" 140.298902 | \n",
" 0.000000 | \n",
" 17.065464 | \n",
" 147.906886 | \n",
" 0.000000 | \n",
" 47.50 | \n",
"
\n",
" \n",
" | 2018-11-01 02:00:00 | \n",
" 65.715569 | \n",
" 139.991650 | \n",
" 10.139587 | \n",
" 49.339708 | \n",
" 149.603741 | \n",
" 3.333301 | \n",
" 47.50 | \n",
"
\n",
" \n",
" | 2018-11-01 02:15:00 | \n",
" 65.929909 | \n",
" 148.342325 | \n",
" 19.585104 | \n",
" 61.721718 | \n",
" 155.887905 | \n",
" 6.455359 | \n",
" 47.50 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Tsource (VDG) Tsink (VDG) MW (VDG) Tsource (NDG) \\\n",
"2018-11-01 00:00:00 64.964783 142.003109 0.000000 19.897433 \n",
"2018-11-01 00:15:00 54.578777 138.960493 0.000000 17.950905 \n",
"2018-11-01 00:30:00 65.166672 139.885329 0.000000 33.500757 \n",
"2018-11-01 00:45:00 65.358078 139.731901 0.000000 42.203876 \n",
"2018-11-01 01:00:00 64.947536 139.577871 0.000000 18.702675 \n",
"2018-11-01 01:15:00 65.073433 139.423357 0.000000 19.903652 \n",
"2018-11-01 01:30:00 47.711559 140.328730 0.000000 19.574467 \n",
"2018-11-01 01:45:00 29.525829 140.298902 0.000000 17.065464 \n",
"2018-11-01 02:00:00 65.715569 139.991650 10.139587 49.339708 \n",
"2018-11-01 02:15:00 65.929909 148.342325 19.585104 61.721718 \n",
"\n",
" Tsink (NDG) MW (NDG) new_cl \n",
"2018-11-01 00:00:00 147.731814 0.000000 28.75 \n",
"2018-11-01 00:15:00 148.138964 0.000000 38.75 \n",
"2018-11-01 00:30:00 147.585426 0.000000 47.50 \n",
"2018-11-01 00:45:00 147.547612 0.000000 47.50 \n",
"2018-11-01 01:00:00 148.260335 0.000000 47.50 \n",
"2018-11-01 01:15:00 149.186865 0.000000 47.50 \n",
"2018-11-01 01:30:00 147.800016 0.000000 47.50 \n",
"2018-11-01 01:45:00 147.906886 0.000000 47.50 \n",
"2018-11-01 02:00:00 149.603741 3.333301 47.50 \n",
"2018-11-01 02:15:00 155.887905 6.455359 47.50 "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[:10]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"line": {
"color": "rgba(255, 153, 51, 1.0)",
"dash": "solid",
"shape": "linear",
"width": 1.3
},
"mode": "lines",
"name": "Total demand",
"text": "",
"type": "scatter",
"x": [
"2018-11-01 00:00:00",
"2018-11-01 01:00:00",
"2018-11-01 02:00:00",
"2018-11-01 03:00:00",
"2018-11-01 04:00:00",
"2018-11-01 05:00:00",
"2018-11-01 06:00:00",
"2018-11-01 07:00:00",
"2018-11-01 08:00:00",
"2018-11-01 09:00:00",
"2018-11-01 10:00:00",
"2018-11-01 11:00:00",
"2018-11-01 12:00:00"
],
"y": [
0,
0,
22.136305576196264,
26.466385499756743,
27.03229093604222,
27.54794718804935,
27.440281686151753,
27.583654471580218,
27.577044662052625,
27.581801797517297,
27.436184420796337,
27.550800509445207,
27.57122371725145
]
}
],
"layout": {
"height": 400,
"legend": {
"bgcolor": "#F5F6F9",
"font": {
"color": "#4D5663"
}
},
"paper_bgcolor": "#F5F6F9",
"plot_bgcolor": "#F5F6F9",
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"font": {
"color": "#4D5663"
},
"text": "Smurfit Kappa: Heat demand in MW"
},
"width": 800,
"xaxis": {
"autorange": true,
"gridcolor": "#E1E5ED",
"range": [
"2018-11-01",
"2018-11-01 12:00"
],
"showgrid": true,
"tickfont": {
"color": "#4D5663"
},
"title": {
"font": {
"color": "#4D5663"
},
"text": ""
},
"type": "date",
"zerolinecolor": "#E1E5ED"
},
"yaxis": {
"autorange": true,
"gridcolor": "#E1E5ED",
"range": [
-1.5324252484211232,
29.11607972000134
],
"showgrid": true,
"tickfont": {
"color": "#4D5663"
},
"title": {
"font": {
"color": "#4D5663"
},
"text": "MW"
},
"type": "linear",
"zerolinecolor": "#E1E5ED"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABHsAAAGQCAYAAAA+6mwIAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3Qm4HWWZ4PH33HPXrCCBwG0CCLjQgWAUW1DZCRJwQVBE0U47oRsGmmWAVnDoYbQZERsZFmFghminx9gxyiItBEyzBBVsN5pt0AYDMTGCJM2S5a7nnnm+uqdO6lbOuaf28y3/+zw+mHurvnq/31v3rXxvquqUtm4bqgpfCCCAAAIIIIAAAggggAACCCCAAAJWCJRo9liRRyaBAAIIIIAAAggggAACCCCAAAIIeAI0ezgREEAAAQQQQAABBBBAAAEEEEAAAYsEaPZYlEymggACCCCAAAIIIIAAAggggAACCNDs4RxAAAEEEEAAAQQQQAABBBBAAAEELBKg2WNRMpkKAggggAACCCCAAAIIIIAAAgggQLOHcwABBBBAAAEEEEAAAQQQQAABBBCwSIBmj0XJZCoIIIAAAggggAACCCCAAAIIIIAAzR7OAQQQQAABBBBAAAEEEEAAAQQQQMAiAZo9FiWTqSCAAAIIIIAAAggggAACCCCAAAI0ezgHEEAAAQQQQAABBBBAAAEEEEAAAYsEaPZYlEymggACCCCAAAIIIIAAAggggAACCNDs4RxAAAEEEEAAAQQQQAABBBBAAAEELBKg2WNRMpkKAggggAACCCCAAAIIIIAAAgggQLOHcwABBBBAAAEEEEAAAQQQQAABBBCwSIBmj0XJZCoIIIAAAggggAACCCCAAAIIIIAAzR7OAQQQQAABBBBAAAEEEEAAAQQQQMAiAZo9FiWTqSCAAAIIIIAAAggggAACCCCAAAI0ezgHEEAAAQQQQAABBBBAAAEEEEAAAYsEaPZYlEymggACCCCAAAIIIIAAAggggAACCNDs4RxAAAEEEEAAAQQQQAABBBBAAAEELBKg2WNRMpkKAggggAACCCCAAAIIIIAAAgggQLOHcwABBBBAAAEEEEAAAQQQQAABBBCwSIBmj0XJZCoIIIAAAggggAACCCCAAAIIIIAAzR7OAQQQQAABBBBAAAEEEEAAAQQQQMAiAZo9FiWTqSCAAAIIIIAAAggggAACCCCAAAI0ezgHEEAAAQQQQAABBBBAAAEEEEAAAYsEaPZYlEymggACCCCAAAIIIIAAAggggAACCNDs4RxAAAEEEEAAAQQQQAABBBBAAAEELBKg2WNRMpkKAggggAACCCCAAAIIIIAAAgggQLOHcwABBBBAAAEEEEAAAQQQQAABBBCwSIBmj0XJZCoIIIAAAggggAACCCCAAAIIIIAAzR7OAQQQQAABBBBAAAEEEEAAAQQQQMAiAZo9FiWTqSCAAAIIIIAAAggggAACCCCAAAI0ezgHEEAAAQQQQAABBBBAAAEEEEAAAYsEaPZYlEymggACCCCAAAIIIIAAAggggAACCNDs4RxAAAEEEEAAAQQQQAABBBBAAAEELBKg2WNIMleueliWLlvhRdvfP1uuuPQimTljuiHRE2bRAmvXrZcrr75B/vrsz8rBBx5Q9OELO97rb2yWL37lWllw9JGycMFRhR2XAyGAAAIIIIAAAggggAACOgs41+wJNk2CibnskvO0XRSrmO/4/r1y+efPl73n7OmF7S9yZ8+aJRece6b09vSIv8A/5SMnRl74Nhrbd3ni6WflqmtudKK5NDg0JNffdJs3dd8zeH743nPf9jZZvOj0XH6nszwGzZ4dU+T/7mf5u+6fN48/+YwsOPqIhueG/3s0fdq0+u+w/71GsSxZulx++vNfTfh9V7NpdY7mclIyKAIIIIAAAggggAACCBgp4Eyzx18oPb9m7Q6LKLW4WvXQI7LojNMiN0mKyrYf96xddpmwkMy72eMvRpstYIuaf1HHabWQzrIR02xOWR6DZk/xzZ5gM8c/erAZFPx5s1z739+w4eUd6lGSZm5Rvz8cBwEEEEAAAQQQQAABBPQScKbZM9m/pKuUqIXUiy+ukyMPP0yrDDVr9jQKMslisNGdPa41epQlzR6tTvvIwbT7MS7/vNm6bcCLWd15F7zzS/0uff2Wb8q8A98uTz796wmNZtVkfuY3v5nwSKb6Hb7u5iXeWLvvuv2uPfVnf6zgHX6RodgQAQQQQAABBBBAAAEEnBJwptkz2eNKjTKutl/10Gq58Jwz5bqbbxP1L+3qy39fzmuvv+69E2Xzli0Tvu+/R6fZIrRR8ybYpOnfY7b36JT6OvJ9h8pzL7xQP7Yfp7oD6b3veZf3rhL/sSJ/DD8ef9tWd+aEXfxxDn33O3d4JMVvAoW9wo+iBOejtvXfNaT+f3hb//h/c+HZcufdK0U9DhN09j2Dd0gEjz9/3tyGj13FbVilafaEHw0MxxS8WyMYezA3zbZpNr9wDvy70/zv77HHbNmyeesO7+xpdJxGOUlz7sfJld/wCP+eNZt32NqfZ5RHFxvVgLjHD7sHz5u37r+f3PvDB3do6Iyfz7vv8Chmo3jU95586hk56oj3ynfuuHtCI6hRc8ipqxWTRQABBBBAAAEEEEAAgcgCzjR7/MV/1MWzv6gMvgw5uFBu9P3g+1ySNHtUoybcnGn1GFfwmGnv7FFnjWpgNWr0qJ8pw1/88okd7lxQzalgwyDYeAo+Gtfo7irfOfwITHhhqxz+zzeXyYdPOr7+3qLJGjRFNHv847+8ceOki3J1Ltxy2z/K2Wf+ef2l2o0e40nyGFezGBpZ+98L5qTROZP23I+TK79J1er3SZ1/jd5lE+ecb9bsUY9wRjl+o6oaPAf/4tOfkKuvu6n+smj/Lp0Lz1ks/+/Xz+/Q7GkUu5qj+jrumPdPeMF2nDv8Ild/NkQAAQQQQAABBBBAAAFrBZxp9qgMNno5c6P3bPjbqrsbwp965d/x0+r7SZo9je5OKKrZ8+lPfFS+9Z07Zf999254p0yz34BWdyoFPyGpUXOm2R1XURfxWT3a0uxulPC8g824ZseOGnv4XErS7GkVg/9pXJM1C8KNtajnuG/TbPuwXaNYm92tEh6z2TuI4jzGNdmdPa1+n1ud/+rn6sXeDz3ymHdHoBrve3fe4+2mHutqdOxwTvy5LPrUafK2t+zrvTB83kFzvfeIRT2nrL1SMTEEEEAAAQQQQAABBBCIJeBUs8eXafTIU7jpk3bBa1KzJ/iYlTKa7NOKojySNNnCtFFjIfxJYyqGZo2POA27OL8JSR7jUnPZuGnTDs2xZo2V8KNWKr6kd5T4c2vWLAk3RyZ7YXO4CZP23A82gcLnVqs7uIL7Bs+LZk3BPJs9jc7L8DkVPm+Ghoa9xyvfvNcc7x09frOtWfzB/KlHQ9WfLz7/LO8OsOD59Zvn1njv/uF9PXF+q9kWAQQQQAABBBBAAAF3BZxs9oTT7S+Eg3e1pF3wmtbsCb4HSL2fqFHDx2+0BO9uiXNnj3IPuzZbBDe762HzG1snLHizvrNHxRjlo9ej3AnkO/nn1/QZUyfcKZb2zp7JGlTh5k6z9y35vwvBJkxW536UXE12Z0+w2dJsO92aPb09PfU7CIOPjDY7z4Pnr3rUS72vxz//1M+WfntF/S6hRo1Fdy9dzBwBBBBAAAEEEEAAAQQmE6DZU9PJ+lEWk5o9wUW1H3d4od7sTpu4zZ6kd/ZEWSyrT0JK+pXlnT3hGKI+qpTkMa5mdxfFubMnHG/aZk+cXEVt9jSLScdmT6O7qKI8rrhhw0vei5z9Rx/9cc78i0/Kw488KrN22WWHl6YnPd/ZDwEEEEAAAQQQQAABBOwWcKbZs/pHj8k++8ypv9w3mNZm75LJ4p09wRcoq2PGbY7EeWdPnIWvP/9Gi1B/kam28R8bafZoVpz5NNq21SLYfwymWVOgXXf2KJtmsbc6t4L2wXMsyUt4o/rFaSSlbfbEyVXUZk+jF04rxzjnfNx39iR5jEvd2dPoq9UdbC+9snGHT0/zz4cpU/omPBJm9yWJ2SGAAAIIIIAAAggggEAWAs40e/xHkMKfxuUvqJ5fs3bC40FpF7wqOY0+UUq9dFV9vHjwUajJ3nETp9nT6u6UOIvQ8KNHPT3d3gtj1Zf/mEnwUaYo82n0aUqNFsH+An72rFkTHmkJf+qX3wBo9JLtIj+NK3zu+I0g9V91l0ajOfrnY/CdPY3OmVa/5JN9qlf4cbxmJuFPC0t77k/2SWBJ39nT6NwOnn/BTxhrZqZjs8c/V9S7jcLnQquftTo3+DkCCCCAAAIIIIAAAgi4K+BMs0eluNl7S8Ifd+4vstLc2aPGCL/XRS10/+bCs+XOu1dOeCQjq2aPOmb4BcqN5hY83Se7OyXcTJm9265ew0c1q9RXq/moj5IPfk22mA3/CjaKO5w/tc0h7zq44Ytri2j2+DE3eml0eK7hbVRzQn2Fz7HwORNuTjYqVeGcq2OrT3RSL/T174zy92v2gu1gsyRts6fR71qzXEW9s6fZ75Oan3qvzYKjj6w//tSsnOva7PHP1Ua5nuxn7l62mDkCCCCAAAIIIIAAAgi0EnCq2dMKg59nIxDnY6KjPAqVTVSMggACCCCAAAIIIIAAAggggIAbAjR73MhzobOk2VMoNwdDAAEEEEAAAQQQQAABBBBAYIIAzR5OiMwFaPZkTsqACCCAAAIIIIAAAggggAACCEQWoNkTmYoNEUAAAQQQQAABBBBAAAEEEEAAAf0FaPbonyMiRAABBBBAAAEEEEAAAQQQQAABBCIL0OyJTMWGCCCAAAIIIIAAAggggAACCCCAgP4CNHv0zxERIoAAAggggAACCCCAAAIIIIAAApEFaPZEpmJDBBBAAAEEEEAAAQQQQAABBBBAQH8Bmj3654gIEUAAAQQQQAABBBBAAAEEEEAAgcgCNHsiU7EhAggggAACCCCAAAIIIIAAAgggoL8AzR79c0SECCCAAAIIIIAAAggggAACCCCAQGQBmj2RqdgQAQQQQAABBBBAAAEEEEAAAQQQ0F+AZo/+OSJCBBBAAAEEEEAAAQQQQAABBBBAILIAzZ7IVGyIAAIIIIAAAggggAACCCCAAAII6C9As0f/HBEhAggggAACCCCAAAIIIIAAAgggEFmAZk9kKjZEAAEEEEAAAQQQQAABBBBAAAEE9Beg2aN/jogQAQQQQAABBBBAAAEEEEAAAQQQiCxAsycyFRsigAACCCCAAAIIIIAAAggggAAC+gvQ7NE/R0SIAAIIIIAAAggggAACCCCAAAIIRBag2ROZig0RQAABBBBAAAEEEEAAAQQQQAAB/QVo9uifIyJEAAEEEEAAAQQQQAABBBBAAAEEIgvQ7IlMxYYIIIAAAggggAACCCCAAAIIIICA/gI0e/TPEREigAACCCCAAAIIIIAAAggggAACkQVo9kSmYkMEEEAAAQQQQAABBBBAAAEEEEBAfwGaPfrniAgRQAABBBBAAAEEEEAAAQQQQACByAI0eyJTsSECCCCAAAIIIIAAAggggAACCCCgvwDNHv1zRIQIIIAAAggggAACCCCAAAIIIIBAZAGaPZGp2BABBBBAAAEEEEAAAQQQQAABBBDQX4Bmj/45IkIEEEAAAQQQQAABBBBAAAEEEEAgsgDNnshUbIgAAggggAACCCCAAAIIIIAAAgjoL0CzR/8cESECCCCAAAIIIIAAAggggAACCCAQWYBmT2QqNkQAAQQQQAABBBBAAAEEEEAAAQT0F6DZo3+OiBABBBBAAAEEEEAAAQQQQAABBBCILECzJzIVGyKAAAIIIIAAAggggAACCCCAAAL6C9Ds0T9HRIgAAggggAACCCCAAAIIIIAAAghEFqDZE5mKDRFAAAEEEEAAAQQQQAABBBBAAAH9BWj26J8jIkQAAQQQQAABBBBAAAEEEEAAAQQiC9DsiUzFhggggAACCCCAAAIIIIAAAggggID+AjR79M8RESKAAAIIIIAAAggggAACCCCAAAKRBWj2RKZiQwQQQAABBBBAAAEEEEAAAQQQQEB/AZo9+ueICBFAAAEEEEAAAQQQQAABBBBAAIHIAjR7IlOxIQIIIIAAAggggAACCCCAAAIIIKC/AM0e/XNEhAgggAACCCCAAAIIIIAAAggggEBkAZo9kanYEAEEEEAAAQQQQAABBBBAAAEEENBfgGaP/jkiQgQQQAABBBBAAAEEEEAAAQQQQCCyAM2eyFRsiAACCCCAAAIIIIAAAggggAACCOgvQLNH/xwRIQIIIIAAAggggAACCCCAAAIIIBBZgGZPZCo2RAABBBBAAAEEEEAAAQQQQAABBPQXoNmjf46IEAEEEEAAAQQQQAABBBBAAAEEEIgsQLMnMhUbIoAAAggggAACCCCAAAIIIIAAAvoL0OzRP0dEiEBkgY2vbpFZO0+LvD0bIpCnwNaBIW/4qX09eR6GsRGILECNjEzFhgUIUCMLQOYQsQSokbG42BgB7QVo9mifIgJEILoAF+noVmyZvwALmfyNOUI8AWpkPC+2zleAGpmvL6PHF6BGxjdjDwR0FqDZo3N2iA2BmAJcpGOCsXmuAixkcuVl8AQC1MgEaOySmwA1MjdaBk4oQI1MCMduCGgqQLNH08QQFgJJBLhIJ1Fjn7wEWMjkJcu4SQWokUnl2C8PAWpkHqqMmUaAGplGj30R0E+AZo9+OSEiBBILcJFOTMeOOQiwkMkBlSFTCVAjU/Gxc8YC1MiMQRkutQA1MjUhAyCglQDNHq3SQTAIpBPgIp3Oj72zFWAhk60no6UXoEamN2SE7ASokdlZMlI2AtTIbBwZBQFdBGj26JIJ4kAgAwEu0hkgMkRmAixkMqNkoIwEqJEZQTJMJgLUyEwYGSRDAWpkhpgMhYAGAjR7NEgCISCQlQAX6awkGScLARYyWSgyRpYC1MgsNRkrrQA1Mq0g+2ctQI3MWpTxEGivAM2e9vpzdAQyFeAinSkng6UUYCGTEpDdMxegRmZOyoApBKiRKfDYNRcBamQurAyKQNsEaPa0jZ4DI5C9ABfp7E0ZMbkAC5nkduyZjwA1Mh9XRk0mQI1M5sZe+QlQI/OzZWQE2iFAs6cd6hwTgZwEuEjnBMuwiQRYyLRgq45JaWRAZHT8fyX135FtUqoMiowMSGlkm0hlcHybypBIqSxS6hDpKEu1o/b/ve+Vxr8v23+u/jy+jb9dx/j/79i+XdXbT31v4n7e96RDqmrMwDHHt6vto8aX0M+9GPT+0qZGVisiY+p/o1IS//+Piajv135WUj/3fjY6vq2/T7UiperY9u953x/fpuTtr342WttX/Wx83JI/jtSOo/4cPFZ9/LH6vt4+9VhrMfjxVqvj54Ooc0L9t/blf099v6p+XPuZ+m/9z032mbBNbd9J9qn6xw4fR33f+wodx/u+/71GMfv7BObS6vjh48SY58ioshbp6lS/SyKiTBWS99/aV/B79W0C23ozirqPGtMfO7RPfYxaDOHje38O7OPlfzyO6Mffvk+seXqpamVTGq9lXh2s1bVaDax2dAZ+Nl5D1TZejfTrpNqmVvvGa2ztz6pm+uN631O10R+/tk3tz/WaWR9TbdfpxTThWH4tVsdR8frxecdv75c2NbK9DNkcfcLvs/rdUbXXP4/HalVK1QD/98rfpvb7rbYP/8z7VVDjjNcO71rg/25429aOoY4z2f61cUuNYtwhnu0xj5eBiXF5MXjHCx2z5P/Zj7lWe6LuX5vPyMGLs8mHo6PQ7HE08UzbTgEu0nbm1dRZWdPsUU2Z0cHxpky9GRNuyqjmjNpmW61pE/j/XiNHNXBqPxsdlNLoNpHRIVNT2zxurxnlL4hqjSW1WPIaR/7/Qk2rYNMo1GCq+vv6jSz/5973y7WGVO2Y3jj+Qm68KTW++NrelNo2OCpT+jprjZZac8RrgtQaIKoRohow4QaH3/SQMSmpbcNNEAk1U2qNnPHGi9+EqTVlan9JLzb5aiG83cFz8RaZtQbehObhuJm3oFWm9QVxoLnn/bzYGdh4tLHK+OKnowxm2vyqdWV9EVxvetYaqer31v+etzD1m6Lqv9XxeqB+h/1FtPf77y+i00YWc/96DVX1K9iM9xtWfsN/vIm0/fdzvGnk1Uy/ptYbVuPbjY+n9gs0/9U+gebYtgFVI7snbRTUm3sTFu2y3cxvIHiN5R0bBdubgxGbE944480Nv9Hg5Ttuc8PfXqpSb3L4eQ7GuUPMwUaj+v/qfGrQ3KiP78cZM/ft2Nz/Rxrvv4FGuHfdLIn3j0LqfJnwM7+BH/h+eH/vPPT3r/2DlNc4b7JP/R+tQjGIyODxN7VDxppj0uyxJpVMBAERmj2cBToJFN/sqdbuggk0VtQdMv6dM95dNKrhUmvcqCZM7c6a8W221Ro2ah/VjFFNGfX9wWis5W6pdvaJdPZKtatPpFz7/+Ueka6+2s/Uf3tF1Pc6a//f+2/f+Dbe99XP+8bHUGOpn3V0Bf5iW/uLr2pC1f8SrBYs/l+sa//1FjD+X6bVX079vzD7/60tcry/2KqmhPrL9Pi+XkOj/hfX7cfb/i+K2/f1Ygjs6y2kJvwlfHz/7Qup0PHUtqFYJ25f+0u+d3eLujMgHOvEeW5f8AXm6S3uqjIyMiJd3d21v3A2uDPJXxD5TSJvMTWxWTVxAVZriATuoPJ+7jedGjSrxvef2DjZvgCrNbE6tt9BFWxW+XcsTLjrqt7Mqt3Z4DdqJtzVpf9dV9F+yezaqvgaaZdf7rOpN39qd8eFm0ShBtLEO+4CTaVag6k0pupxrdFUayxPaFCNhZpS6i46r2Hs38nXoGnljbO9eTWxqeXXytrPvTpca4DV7w4MNLqrYzIyPCxdXeMNe+/L+2/w/+/YENh+d+n4z8bvuGu0T6hp4DUE/Lv/avtMun9o3EYNilrM9bv+JmyjphKKwWt8+Xf8bY+5vr8/F68Z4R9/x4bEjg2RWkM8OHaD4zRqsIzfMqcaJY1jm7BPfT7exHfIm9cTa9KIqc87918kDtBOAZo97dTn2AhkLECzJ2NQhkslMOlCxrtDZqh2t0utsTKhGRNoynh3xIw3aMYfbfLvoqk1ZVRDp/bo06QBq0WwaqB01JovqhnjNWH8xotq0PQGmjW1po3XfKk1XbzGzMT91XjeuAY8xpQqoRbsTI20IIkWTYFmj0XJtGQq1EhLEsk0EKgJ0OzhVEDAIgEu0hYlU6epqDs9VJPFu/Ml8N+RrbU/b5XSsLoDxv/zgJSGt0hlaIt3Z0y5MiSlSu0RKP+ummbzy/PumHK3TqrE0gYBamQb0DlkUwGaPZwcuglQI3XLCPEgkE6AZk86P/ZGQCsBLtJapaO9wYyNjD+KNKwaNFu330Gj7pIJN2yG/QbO1lpDZ3vjxttW/S/8pe6S6ZwyfmdM9zSRzim1x46mSrVLfX+KDIu6M6ZXuvqm1x5N4u6Y9p4UHJ0ayTmgkwDNHp2yQSxKgBrJeYCAXQI0e+zKJ7NxXICLtOEngP8CX++/obtl6nfRhJo1w1vH3yvj/Vc1dWqPNlWGd8To6Ko3YrxGTffUWsNGNWpUg6bWqPEaN1PGGzjdU0U6p0q1Wz2+NLW2j3qXTF9LbBYyLYnYoGABamTB4BxuUgFqJCeIbgLUSN0yQjwIpBOg2ZPOj70R0EqAi3TB6VCfshNssKiGjH+XzLC6S0a9W8a/W6Z294z3/VrDxrvLJtCgafQpPf4LelUjxm/Q1O6cUc0X710xXpNmau39M6qJM632wt8p4w0adfeN+nnBjzGxkCn4fORwLQWokS2J2KBAAWpkgdgcKpIANTISExshYIwAzR5jUkWgCLQW4CLd2qjVFqUtf5DO394z/qiTd5eM/wiUeueMuntGPRpVezeNesFwg6/xu2ECd8dMuGsm0KDxtqs1Yry7aGp31/iPR3VNM/qlvyxkWp1t/LxoAWpk0eIcbzIBaiTnh24C1EjdMkI8CKQToNmTzo+9EdBKgIt08nSoBk95zb1SfulxqXZPl7FZB2y/Y8ZryKjHmtTjTLXHm9SdMsEGjf/Yk/ovX54ACxlOBN0EqJG6ZcTteKiRbudfx9lTI3XMCjEhkFyAZk9yO/ZEQDsBLtLxUlJ++XEp//Ye6Vxzn0h1TCpzDpfR/U6Sypwj4g3E1g0FWMhwYugmQI3ULSNux0ONdDv/Os6eGqljVogJgeQCNHuS27EnAtoJcJFunRLvMa0190rn8/dIaetLMrbT/jK6/0lS2W+hVLtntB6ALSILsJCJTMWGBQlQIwuC5jCRBKiRkZjYqEABamSB2BwKgQIEaPYUgMwhEChKgIt0M+mq19zpXLNSOl5Wj2lNlcqbF3pNnrE3va2o9Dh3HBYyzqVc+wlTI7VPkVMBUiOdSrcRk6VGGpEmgkQgsgDNnshUbIiA/gJcpCfmqPzSr8Yf03pxlcjYqFT2fL+M7neiVPY6Sv9kWhAhCxkLkmjZFKiRliXU8OlQIw1PoIXhUyMtTCpTclqAZo/T6WfytglwkRYpbd4w/pjWmpWiHtka22lfqex3kozuf6JUu2falnKt58NCRuv0OBkcNdLJtGs7aWqktqlxNjBqpLOpZ+KWCjjf7BkcGpLrb7pNHn/ymXqKL7vkPDn4wAO8P69dt16uvPoG2bxlS/3n/f2z5YpLL5KZM6ZbelowLVMFnL1IV8ek87fjDR71mJZ0TZHRfRd6d/GM7TL+u8xX8QIsZIo354iTCzhbIzkxtBSgRmqZFqeDokY6nX4mb6GA882e19/YLN+78x454/SPSm9Pjzzx9LPy9Vu+KZd//nzZe86eXrPnupuXyIXnLPb+zBcCOgu4dpEuv/RL7+PSO198QKQyLJX+w8Zftrz3MTqnyZnYWMg4k2pjJupajTQmMY4GSo10NPEaT5saqXFyCA2BBALON3vCZqr588WvXCuLPnWad3cPzZ4EZxW7tE3AhYt0acsG6VTv4XlhlZQ2r5exnd4slX1P9O7iqfbu3DZ7DryjAAsZzgrdBFyokbqZE09zAWokZ4duAtRI3TJCPAikE6DZE/ILN3fCj3HxCFe6E4698xWw9iJde0ypAfw5AAAgAElEQVSrvGallNVjWp19449p7a8e0/rTfFEZPbEAC5nEdOyYk4C1NTInL4bNV4Aama8vo8cXoEbGN2MPBHQWoNkTyI7//p55B82VhQsaf1rPkqXLZeOmTXLBuWd6j31tem2rzvklNscEqtWqlEola2bdu/FXMmXdKpnyhx9LqTIog7u9W7bOOV629fNpWkYkuVodD9Oic9IId4JsKmBbjSTVhgtQIw1PoH3hUyPty6npM9plp6mmT6Gt8dPsqfH7jZ5Zu+wiixed3jQp6k4f1fC5+PyzvBc0q6LIFwK6CKjmo+lFsWPz772XLZfXPigdm38nYzP3kdF9T5DRfU+Sat+bdKEmjggCWweHva2m9nZH2JpNEMhfwIYamb8SRyhKgBpZlDTHiSpAjYwqxXZFCdj0j9hFmQWPQ7NHRKI2ehRcuNnTjqRxTASaCRh7+616TOv5e6S8dpWU//ALkXJP7dO0FsrYrgeRcEMFeETB0MRZHLaxNdLinLg8NWqky9nXc+7USD3zQlQIJBVwvtnT6tGt1T96TPbZZ079k7jUXT3qa7K7f5Img/0QSCtg2kVaNXbKL94v5bWrpTSyRSr97/FetFzZZ0FaCvbXQICFjAZJIIQJAqbVSNJntwA10u78mjg7aqSJWSNmBJoLON/sCb+A2adacPQRXkNHfRT7VdfcWBecP29u/X09nFgI6CZgwkW69MZ66XxBPaa1Wjpef0HGZuwlFe9ly+oxrVm6kRJPCgEWMinw2DUXARNqZC4TZ1AtBaiRWqbF6aCokU6nn8lbKOB8s8fCnDIlhwW0vUhXK97HpZfXPiTlDf8qUu4ef0xr34Uytts8hzNm99RZyNidXxNnp22NNBGTmFMLUCNTEzJAxgLUyIxBGQ6BNgvQ7GlzAjg8AlkK6HaR9h7TUu/hUY9pDb8hlT3ePX4Xz74nZDltxtJUgIWMpolxOCzdaqTDqWDqIkKN5DTQTYAaqVtGiAeBdAI0e9L5sTcCWgnocJEuvbFOOl/84fhjWq89L9UZc2p38Zwo1am7aeVFMPkKsJDJ15fR4wvoUCPjR80etgpQI23NrLnzokaamzsiR6CRAM0ezgsELBJo20V6bFQ619wr5d+tlvLvHxPp6Br/uPT91GNa77BImKnEEWAhE0eLbYsQaFuNLGJyHMM4AWqkcSmzPmBqpPUpZoKOCdDscSzhTNdugaIv0uUNP5fy7x7ymjyloVelsschUnnzQq/JwxcCLGQ4B3QTKLpG6jZ/4tFLgBqpVz6IRoQayVmAgF0CNHvsyiezcVygiIv0+GNa/+I1eDpe/XepTt9TRt98gozurx7T2t3xDDD9oAALGc4H3QSKqJG6zZl49BWgRuqbG1cjo0a6mnnmbasAzR5bM8u8nBTI7SJdGZHOF+6X8rpHpLz+xyIdnd5jWuounsru8520ZtKtBVjItDZii2IFcquRxU6Do1kiQI20JJEWTYMaaVEymQoCIkKzh9MAAYsEsr5Ie49prVst5d89LKXB/5DK7u+SinoXz74nipRKFskxlTwEWMjkocqYaQSyrpFpYmFfBKiRnAO6CVAjdcsI8SCQToBmTzo/9kZAK4EsLtLeY1prH/Tu4unY9KxUp//J+GNa+50o1Wl7aDVfgtFbgIWM3vlxMbosaqSLbsw5HwFqZD6ujJpcgBqZ3I49EdBRgGaPjlkhJgQSCiS+SFeGpfPFB6S8/hHvXTxS6vA+Ll3dxaPu5uELgSQCLGSSqLFPngKJa2SeQTG2swLUSGdTr+3EqZHapobAEEgkQLMnERs7IaCnQNyLdPkPv5TyevWY1mopbXtFKru/Uyq1u3hUw4cvBNIIsJBJo8e+eQjErZF5xMCYCPgC1EjOBd0EqJG6ZYR4EEgnQLMnnR97I6CVQJSLtPeYlnrR8rrV0vHK096jWeouHvWoVnXGnlrNh2DMFmAhY3b+bIw+So20cd7MSU8BaqSeeXE5Kmqky9ln7jYK0OyxMavMyVmBphdp9ZjW7x6uvWx5tecz/mlaJ0hlj0Oc9WLi+QqwkMnXl9HjC7CQiW/GHvkJUCPzs2XkZALUyGRu7IWArgI0e3TNDHEhkEAgfJHuePnx8bt41GNaW1+Ssdnzay9bXuh9fDpfCOQpwEImT13GTiLAQiaJGvvkJUCNzEuWcZMKUCOTyrEfAnoK0OzRMy9EhUAiAXWR3rXrDen83erxx7T++GTtMa0Tao9pzUk0LjshkESAhUwSNfbJU4CFTJ66jB1XgBoZV4zt8xagRuYtzPgIFCtAs6dYb46GQH4C1TGRBy+XKS/9RGRspPaY1kKp9L87v2MyMgKTCLCQ4fTQTYCFjG4ZcTseaqTb+ddx9tRIHbNCTAgkF6DZk9yOPRHQSqDr326Vjufvlco7Fnt38Ui5W6v4CMY9ARYy7uVc9xmzkNE9Q27FR410K98mzJYaaUKWiBGB6AI0e6JbsSUC+gqMDsqUfzpGXp17jvS889P6xklkTgmwkHEq3UZMloWMEWlyJkhqpDOpNmai1EhjUkWgCEQSoNkTiYmNENBboOuXN0rnuh/JuiO/IbN2nqZ3sETnjAALGWdSbcxEWcgYkyonAqVGOpFmoyZJjTQqXQSLQEsBmj0tidgAAb0FSkOvS9+KhTJ86OfkpVnH0ezRO11ORcdCxql0GzFZFjJGpMmZIKmRzqTamIlSI41JFYEiEEmAZk8kJjZCQF+B7p99TdRHrA9+6FvCRVrfPLkYGQsZF7Ou95ypkXrnx7XoqJGuZVz/+VIj9c8RESIQR4BmTxwttkVAM4HStlek7/aPyPB7L5fR/U6k2aNZflwPh4WM62eAfvNnIaNfTlyOiBrpcvb1nDs1Us+8EBUCSQVo9iSVYz8ENBDofuzL0vEfz8vgSd/wouEirUFSCKEuwEKGk0E3AWqkbhlxOx5qpNv513H21Egds0JMCCQXoNmT3I49EWirQGnz76Xvro/L0OFfkso+x9HsaWs2OHgjARYynBe6CbCQ0S0jbsdDjXQ7/zrOnhqpY1aICYHkAjR7ktuxJwJtFej+8X+Xjq0vyeAHbqnHwUW6rSnh4CEBFjKcEroJUCN1y4jb8VAj3c6/jrOnRuqYFWJCILkAzZ7kduyJQNsEOl5bI73//GkZOvIqqex1JM2etmWCA08mwEKG80M3ARYyumXE7XiokW7nX8fZUyN1zAoxIZBcgGZPcjv2RKBtAj2rvyAyvFmGFtw4IQYu0m1LCQduIMBChtNCNwFqpG4ZcTseaqTb+ddx9tRIHbNCTAgkF3C+2TM4NCTX33SbPP7kM3XFyy45Tw4+8ID6n1eueliWLlvh/Xn+vLlywblnSm9PT3J19kQghUDHpmel997FMnTstVLpP5RmTwpLds1XgIVMvr6MHl+AhUx8M/bIT4AamZ8tIycToEYmc2MvBHQVcL7Z8/obm+V7d94jZ5z+Ua+B88TTz8rXb/mmXP7582XvOXt6f1767RVyxaUXycwZ02XJ0uVeLhcvOl3XnBKX5QI9D14sUq16zZ7wFxdpy5Nv2PRYyBiWMAfCpUY6kGSDpkiNNChZjoRKjXQk0UzTGQHnmz3hTKvmzxe/cq0s+tRp3t09qrnT37+7LFxwlLdpuPnjzJnCRLUQ6PjjE9J7/3/2Ht+q7P4umj1aZIUgmgmwkOHc0E2AhYxuGXE7Hmqk2/nXcfbUSB2zQkwIJBeg2ROyW7tuvVx38xK58JzFMnu3Xb1HvOYdNLfe7An+XN35U61Wk+uzJwIxBXpXnSfSM10Gj/hywz03vbZVdtlpasxR2RyBfAS2Dgx7A0/t687nAIyKQEwBamRMMDbPVYAamSsvgycQoEYmQGOXXAVKpVKu49s+OM2eQIb99/f4zR3/zyccf0z9HT7hZo8qinwhUIRA78bHZdfHPid/fN91MvSmuQ0PqZqPFMUissExogn4zXAu1NG82CpvAWpk3sKMH0+AGhnPi63zFqBG5i3M+HEF+EfsuGITt6fZU/PwGzuzdtml/j6ecPNHbRpu9qTjZ28Eogv03neWVKfOlqHDv9R0J26/je7JlvkL8IhC/sYcIZ4ANTKeF1vnK0CNzNeX0eMLUCPjm7EHAjoL0OwRkUaNHj9pvLNH59PXndjK638sPQ99TgZP+oaMventNHvcSb3RM2UhY3T6rAyehYyVaTV2UtRIY1NnbeDUSGtTy8QcFXC+2dPo7p3gucCncTn6m6HZtHvv+QsZ23l/GX7v5ZNGxkVas8Q5Hg4LGcdPAA2nT43UMCkOh0SNdDj5mk6dGqlpYggLgYQCzjd71GNZV159g2zesmUC4YKjj6g/zrVy1cOydNkK7+fz582VC8490/uYdr4QKEKgvPZB6Xnkchn80LdkbKd9afYUgc4xMhFgIZMJI4NkKMBCJkNMhkotQI1MTcgAGQtQIzMGZTgE2izgfLOnzf4cHoGWAr13f1LGdpsvw4d+ruW2XKRbErFBgQIsZArE5lCRBKiRkZjYqCABamRB0BwmsgA1MjIVGyJghADNHiPSRJCuCnSuuU+6f/IlGTh5hVSn79mSgYt0SyI2KFCAhUyB2BwqkgA1MhITGxUkQI0sCJrDRBagRkamYkMEjBCg2WNEmgjSVYG+O0+Vyp7vl+F3/5dIBFykIzGxUUECLGQKguYwkQWokZGp2LAAAWpkAcgcIpYANTIWFxsjoL0AzR7tU0SArgp0PneXdP/0qzJwyl1SnbpbJAYu0pGY2KggARYyBUFzmMgC1MjIVGxYgAA1sgBkDhFLgBoZi4uNEdBegGaP9ikiQFcF+r73QRndd6GMvPPcyARcpCNTsWEBAixkCkDmELEEqJGxuNg4ZwFqZM7ADB9bgBoZm4wdENBagGaP1ukhOFcFOn/9Xen+1dfH7+rp3TkyAxfpyFRsWIAAC5kCkDlELAFqZCwuNs5ZgBqZMzDDxxagRsYmYwcEtBag2aN1egjOVYG+73xARt/+MRk5+C9jEXCRjsXFxjkLsJDJGZjhYwtQI2OTsUOOAtTIHHEZOpEANTIRGzshoK0AzR5tU0Ngrgp0PbNMOp/6pgye8n2pdk+NxcBFOhYXG+cswEImZ2CGjy1AjYxNxg45ClAjc8Rl6EQC1MhEbOyEgLYCNHu0TQ2BuSow5dtHychBn5WRgxbFJuAiHZuMHXIUYCGTIy5DJxKgRiZiY6ecBKiROcEybGIBamRiOnZEQEsBmj1apoWgXBXoemKJdP7mDhk49U6RcndsBi7SscnYIUcBFjI54jJ0IgFqZCI2dspJgBqZEyzDJhagRiamY0cEtBSg2aNlWgjKSYGxUZmy7AgZedd5MvKnn0xEwEU6ERs75STAQiYnWIZNLECNTEzHjjkIUCNzQGXIVALUyFR87IyAdgI0e7RLCQG5KtD1+P+SzjX3y8CpdyUm4CKdmI4dcxBgIZMDKkOmEqBGpuJj54wFqJEZgzJcagFqZGpCBkBAKwGaPVqlg2BcFSgNb5W+7yyQ4T+7WEbfdmpiBi7SienYMQcBFjI5oDJkKgFqZCo+ds5YgBqZMSjDpRagRqYmZAAEtBKg2aNVOgjGVYHuX1wv5d8/KgMf+U4qAi7SqfjYOWMBFjIZgzJcagFqZGpCBshQgBqZISZDZSJAjcyEkUEQ0EaAZo82qSAQVwVKg69K33dPkuHDLpXR/T+cioGLdCo+ds5YgIVMxqAMl1qAGpmakAEyFKBGZojJUJkIUCMzYWQQBLQRoNmjTSoIxFWB7n/9e+n445My+KH/m5qAi3RqQgbIUICFTIaYDJWJADUyE0YGyUiAGpkRJMNkJkCNzIySgRDQQoBmjxZpIAhXBUpbX5a+Oz4qw+/7bzK67wmpGbhIpyZkgAwFWMhkiMlQmQhQIzNhZJCMBKiRGUEyTGYC1MjMKBkIAS0EaPZokQaCcFWg+9ErpeO1F2TwxCWZEHCRzoSRQTISYCGTESTDZCZAjcyMkoEyEKBGZoDIEJkKUCMz5WQwBNouQLOn7SkgAFcFSm+sk77vf0KGDv87qexzbCYMXKQzYWSQjARYyGQEyTCZCVAjM6NkoAwEqJEZIDJEpgLUyEw5GQyBtgvQ7Gl7CgjAVYGeH/03KQ1slMHjb86MgIt0ZpQMlIEAC5kMEBkiUwFqZKacDJZSgBqZEpDdMxegRmZOyoAItFWAZk9b+Tm4qwIdrz4nvT9YJENHf1Uqe74/MwYu0plRMlAGAixkMkBkiEwFqJGZcjJYSgFqZEpAds9cgBqZOSkDItBWAZo9beXn4K4K9Dz8eZHRARk67oZMCbhIZ8rJYCkFWMikBGT3zAWokZmTMmAKAWpkCjx2zUWAGpkLK4Mi0DYBmj1to+fArgp0bHxGelf+pQwd+z+l0v+eTBm4SGfKyWApBVjIpARk98wFqJGZkzJgCgFqZAo8ds1FgBqZCyuDItA2AZo9baPnwK4K9DxwoUhHlwwd/feZE3CRzpyUAVMIsJBJgceuuQhQI3NhZdCEAtTIhHDslpsANTI3WgZGoC0CNHvaws5BXRXoePlx6f3huTJ4/E0yNnt+5gxcpDMnZcAUAixkUuCxay4C1MhcWBk0oQA1MiEcu+UmQI3MjZaBEWiLAM2etrBzUFcFVKOn2jNTho78ci4EXKRzYWXQhAIsZBLCsVtuAtTI3GgZOIEANTIBGrvkKkCNzJWXwREoXIBmT+HkHNBVgfKGn0rPAxfJ4ML/LWOzDsyFgYt0LqwMmlCAhUxCOHbLTYAamRstAycQoEYmQGOXXAWokbnyMjgChQvQ7AmQL1m6XPr7d5eFC46qf3ftuvVy5dU3yOYtW+rf6++fLVdcepHMnDG98IRxQHMFeleeKWMz5sjw+67IbRJcpHOjZeAEAixkEqCxS64C1MhceRk8pgA1MiYYm+cuQI3MnZgDIFCoQOHNntff2Cxf/Mq13iR1aZisXPWwLF22wotp0Rmn7dDsue7mJXLhOYtl7zl7FpocDmaPQHndI9Lz8KUyeNI/yNib3prbxLhI50bLwAkEWMgkQGOXXAWokbnyMnhMAWpkTDA2z12AGpk7MQdAoFCBwps9anZPPP2sXHXNjRMmqsPdMs3u7KHZU+g5aeXBen/w5zK2y9tl+LAv5Do/LtK58jJ4TAEWMjHB2Dx3AWpk7sQcIIYANTIGFpsWIkCNLISZgyBQmEBbmj3h2fl3+2zY8HL9R+1o/kR5jCscV6UyVliyOJCZAp1rH5C+n1whWz/4LRmbsU+uk3j19W2y88wpuR6DwRGIKjAwOOxt2tfbHXUXtkMgVwFqZK68DB5TgBoZE4zNcxegRuZOzAFiCpTLHTH3YPOggBbNnmBA/iNVujR7wqeLaght3LRJLjj3TOnt6ZFX39jGGYXApAKzH/gLGdp1vrw274LcpSpjY1LuoCjmDs0BIgmMVavedh2lUqTt2QiBvAWokXkLM34cAWpkHC22LUKAGlmEMseII7DzDP4RO45XeNu2N3tU82TVQ4/U45o/b269kZJmYkn2bXRnT3gc9cJmtd3F55/FC5qTIDu2T+dv75HuR/+HDJz8PalO78999tx+mzsxB4ghwCMKMbDYtBABamQhzBwkogA1MiIUmxUmQI0sjJoDIVCIQOHNnvAjW+1s7oSFafYUcs45dZC+O06Wyl5Hy/Ah+d/Vo2C5SDt1emk/WRYy2qfIuQCpkc6lXOsJUyO1To+TwVEjnUw7k7ZYoO3NngVHHyGLF52uBXGjZs/qHz0m++wzp/5JXGob9aVLzFrAEURDgc5/v0O6//UaGfjY3VLtm1WIEhfpQpg5SEQBFjIRodisMAFqZGHUHCiCADUyAhKbFCpAjSyUm4MhkLtA4c2e8IzCn8zVjjt9gh+9ruKbPm2aXP75870Gjw7x5X4WcIBcBPq+e5KM7v9BGZn/n3MZv9GgXKQLo+ZAEQRYyERAYpNCBaiRhXJzsBYC1EhOEd0EqJG6ZYR4EEgn0PZmT7PmTzte0JyOkr0R2C7Q+ex3pPuXN8rAx++Ras/Mwmi4SBdGzYEiCLCQiYDEJoUKUCML5eZgNHs4BwwToEYaljDCRaCFgBbNnvDdMyrmdtzhw9mCQFYCU5YfJyMHfFJGDl6c1ZCRxuEiHYmJjQoSoNlTEDSHiSxAjYxMxYYFCFAjC0DmELEEqJGxuNgYAe0F2tLsCX8CF80d7c8TAowh0PX0P0rXU/8g2z72A5GuYj8ukIt0jESxae4CLGRyJ+YAMQWokTHB2DxXAWpkrrwMnkCAGpkAjV0Q0Fig8GaP/2lcyuSKSy/i48s1PjkILZnAlGWHy8jBfyUjB34m2QAp9uIinQKPXTMXYCGTOSkDphSgRqYEZPdMBaiRmXIyWAYC1MgMEBkCAY0ECm/2aDR3QkEgc4GuJ/6PdP76dhk47R6RUjnz8VsNyEW6lRA/L1KAhUyR2hwrigA1MooS2xQlQI0sSprjRBWgRkaVYjsEzBCg2WNGnojSBIHKsEz59lEyfMgFMnrAJ9oSMRfptrBz0CYCLGQ4NXQToEbqlhG346FGup1/HWdPjdQxK8SEQHKBwps9/mNcGza8PGnUfBpX8qSyZ3sEun51k3SuuV8GPnZ3ewIQES7SbaPnwA0EWMhwWugmQI3ULSNux0ONdDv/Os6eGqljVogJgeQCbWv2bH5jq1z++fNl7zl7Jo+ePRHQRKA0/Ib0fecEGX7PJTL61lPaFhUX6bbRc2CaPZwDBghQIw1IkkMh0uxxKNmGTJUaaUiiCBOBiAKFN3v8uFaueliWLlvBR6xHTBSb6S3Q/fNrpfz7R2Xg5O+1NVAu0m3l5+AhARYynBK6CVAjdcuI2/FQI93Ov46zp0bqmBViQiC5QNuaPSrkwaEhuf6m2+TxJ5+RRWecJgsXHJV8JuyJQJsESgObpO97H5Lhw74go/t/sE1RjB+Wi3Rb+Tk4zR7OAc0FqJGaJ8ix8Gj2OJZwA6ZLjTQgSYSIQAyBtjZ7/DjXrlsvV159g/dHHu2KkT021UKg+7GvSMfGp2TwQ8vaHg8X6bangAACAixkOB10E6BG6pYRt+OhRrqdfx1nT43UMSvEhEByAS2aPU88/axcdc2N3iwuu+Q8OfjAA5LPiD0RKFCgtOUP0nfnqTL8vitkdN8PFHjkxofiIt32FBAAzR7OAY0FqJEaJ8fB0Gj2OJh0zadMjdQ8QYSHQEyBtjZ7gp/MteDoI2TxotNjhs/mCLRXoPsnX5KO116QwZO+2d5AakfnIq1FGgiiJsBChlNBNwFqpG4ZcTseaqTb+ddx9tRIHbNCTAgkF2hbs2fJ0uWy6qFHeEFz8tyxZ5sFVJOn95/PkKEjvyyVvfR43xQX6TafFBx+ggALGU4I3QSokbplxO14qJFu51/H2VMjdcwKMSGQXKDwZo9/Nw8fvZ48aeyph0DPI/9VSts2yuAJt+oREC9o1iYPBDIuwEKGM0E3ARYyumXE7XiokW7nX8fZUyN1zAoxIZBcoG3Nng0bXp406v7+2XLFpRfJzBnTk8+OPRHISaDjP34jvfd8VoaO/nup7Pm+nI4Sf1gu0vHN2CM/ARYy+dkycjIBamQyN/bKR4AamY8royYXoEYmt2NPBHQUKLzZoyMCMSEQV6Dnob8RqQzK0HHjLxbX5YuLtC6ZIA4lwEKG80A3AWqkbhlxOx5qpNv513H21Egds0JMCCQXoNmT3I49HRXoeOUp6b3vLBk67gap7HGIVgpcpLVKh/PBsJBx/hTQDoAaqV1KnA6IGul0+rWcPDVSy7QQFAKJBWj2JKZjR1cFev7lfJFSpwwde612BFyktUuJ0wGxkHE6/VpOnhqpZVqcDYoa6WzqtZ04NVLb1BAYAokEaPYkYmMnVwXKL/1SeladJ4MfuFnGdnuHdgxcpLVLidMBsZBxOv1aTp4aqWVanA2KGuls6rWdODVS29QQGAKJBGj2JGJjJ1cFeu8/W6o9O8vQUVdpScBFWsu0OBsUCxlnU6/txKmR2qbGycCokU6mXetJUyO1Tg/BIRBbgGZPbDJ2cFWg/PtHpefBS2Rw4W0yNutPtWTgIq1lWpwNioWMs6nXduLUSG1T42Rg1Egn0671pKmRWqeH4BCILUCzJzYZO7gq0Hvvf5Lq9DkydPgXtSXgIq1tapwMjIWMk2nXetLUSK3T41xw1EjnUq79hKmR2qeIABGIJUCzJxYXG7sqUP7dw9Kz+gsy+KF/lLGd9teWgYu0tqlxMjAWMk6mXetJUyO1To9zwVEjnUu59hOmRmqfIgJEIJYAzZ5YXGzsqkDvP58hY7PmyvBhX9CagIu01ulxLjgWMs6lXPsJUyO1T5FTAVIjnUq3EZOlRhqRJoJEILIAzZ7IVGzoqkDnC/dL94+/KIMfXi5jM/fSmoGLtNbpcS44FjLOpVz7CVMjtU+RUwFSI51KtxGTpUYakSaCRCCyAM2eANWSpculv393WbjgqAmAK1c9LEuXrfC+N3/eXLng3DOlt6cnMjIbmi3Qd9fHpLLHoTL8nku0nwgXae1T5FSALGScSrcRk6VGGpEmZ4KkRjqTamMmSo00JlUEikAkAZo9IhJs5iw647QJzZ4nnn5Wln57hVxx6UUyc8Z0UQ0h9bV40emRgNnIbIHO5++W7se+IgOn3CHVqbtrPxku0tqnyKkAWcg4lW4jJkuNNCJNzgRJjXQm1cZMlBppTKoIFIFIAjR7AkyN7uwJfy/c/ImkzEbGCvTd/mGp7H2sDB9ygRFz4CJtRJqcCZKFjDOpNmai1EhjUuVEoNRIJ9Js1CSpkUali2ARaClAs2eSZs/g0JBcf9NtMu+gufW7fdauWy/X3bxELjxnsew9Z8+WwGxgrkDnb26X7p99TQY+9gOp9r3JiIlwkTYiTc4EyULGmVQbM1FqpDGpciJQaqQTaTZqktRIo9JFsAi0FKDZE6HZc8Lxx8jBBx7gbRlu9gyPVFoiszmiC4cAACAASURBVIGZAjPvOFGG9j9ZBuf9lTETeH3zgMyc3mdMvARqt8Dg0Ig3wd6eLrsnyuyMEaBGGpMqJwKlRjqRZqMmSY00Kl1OBNvdVXZinnlNkmZPhGbPZHf2vLFlIK/cMG4bBaY+v0KmP3Wr/PGku2Sse3obI4l36JHRinR1UhTjqbF1XgKVsTFv6HJHR16HYFwEYglQI2NxsXHOAtTInIEZPrYANTI2GTvkLDBjGv+InYaYZs8kzR71I97Zk+b0MnffKd8+WkYO/IyMzPtPRk2C22+NSpf1wfKIgvUpNm6C1EjjUmZ1wNRIq9Nr5OSokUamjaARaCpAs6dFs4dP43Lvt6fryW9K19NLZdsn7hcp9xgFwEXaqHRZHywLGetTbNwEqZHGpczqgKmRVqfXyMlRI41MG0EjQLNnsnMg+NHrarvp06bJ5Z8/v/4C5uDP58+bKxece6b09pjVBOB3IKJAdUymfOtwGXnnOTIy94yIO+mzGRdpfXJBJCIsZDgLdBOgRuqWEbfjoUa6nX8dZ0+N1DErxIRAcgHu7Elux54WCnT9263S+evbZeAT94mUzHvPCBdpC09Kg6fEQsbg5FkaOjXS0sQaOi1qpKGJszhsaqTFyWVqTgrQ7HEy7Uy6ocDINpmy/DgZPuRCGT3gNCORuEgbmTZrg2YhY21qjZ0YNdLY1FkZODXSyrQaPSlqpNHpI3gEdhCg2cNJgUBNoPuXN0h5zf0y8PF7jDXhIm1s6qwMnIWMlWk1elLUSKPTZ13w1EjrUmr8hKiRxqeQCSAwQYBmDycEAiJSGnpN+lacKMOHfk5G33KysSZcpI1NnZWBs5CxMq1GT4oaaXT6rAueGmldSo2fEDXS+BQyAQRo9nAOIBAW6P7Z16T8+5/IwEfvMBqHi7TR6bMueBYy1qXU+AlRI41PoVUToEZalU4rJkONtCKNTAKBugB39nAyOC9Q2vaK9N3+ERl+7+Uyut+JRntwkTY6fdYFz0LGupQaPyFqpPEptGoC1Eir0mnFZKiRVqSRSSBAs4dzAAFfoPuxL0vHK0/K4IeXG4/CRdr4FFo1ARYyVqXTislQI61IozWToEZak0prJkKNtCaVTAQBT4A7ezgRnBYobV4vfXedJkOHf0kq+xxnvAUXaeNTaNUEWMhYlU4rJkONtCKN1kyCGmlNKq2ZCDXSmlQyEQRo9nAOINDz4yuk9NqLMvjBpVZgcJG2Io3WTIKFjDWptGYi1EhrUmnFRKiRVqTRqklQI61KJ5NBgDt7OAfcFeh47bfS+8+fkaEjr5LKXkdaAcFF2oo0WjMJFjLWpNKaiVAjrUmlFROhRlqRRqsmQY20Kp1MBgGaPZwD7gr0rL5MSltfkcETb7MGgYu0Nam0YiIsZKxIo1WToEZalU7jJ0ONND6F1k2AGmldSpmQ4wK8s8fxE8DV6XdselZ6710sQ8deK5X+Q61h4CJtTSqtmAgLGSvSaNUkqJFWpdP4yVAjjU+hdROgRlqXUibkuADNHsdPAFen3/PARVKqDMng8TdZRcBF2qp0Gj8ZFjLGp9C6CVAjrUup0ROiRhqdPiuDp0ZamVYm5bAAzR6Hk+/q1Dv++G/Se/85MrTgRqns/i6rGLhIW5VO4yfDQsb4FFo3AWqkdSk1ekLUSKPTZ2Xw1Egr08qkHBag2eNw8l2des+qc0U6umTo2OusI+AibV1KjZ4QCxmj02dl8NRIK9Nq7KSokcamztrAqZHWppaJOSpAs8fRxLs67fKGn0nPAxfK4AdukbHd5lnHwEXaupQaPSEWMkanz8rgqZFWptXYSVEjjU2dtYFTI61NLRNzVIBmj6OJd3Xavff9lVR7dpKho79qJQEXaSvTauykWMgYmzprA6dGWptaIydGjTQybVYHTY20Or1MzkEBmj0OJt3VKZfX/1h6HvqcDJ70DRl709utZOAibWVajZ0UCxljU2dt4NRIa1Nr5MSokUamzeqgqZFWp5fJOShAs8fBpLs65d4fLJLqjL1k6Ii/s5aAi7S1qTVyYixkjEyb1UFTI61Or3GTo0YalzLrA6ZGWp9iJuiYAM0exxLu6nTLax+Qnkf+VgY/9C0Z22lfaxm4SFubWiMnxkLGyLRZHTQ10ur0Gjc5aqRxKbM+YGqk9Slmgo4J0OxxLOGuTrf3+6fL2K5zZfi9f2s1ARdpq9Nr3ORYyBiXMusDpkZan2KjJkiNNCpdTgRLjXQizUzSIQGaPQ4l29Wpdv72Xul+9EoZOHmFVKfvaTUDF2mr02vc5FjIGJcy6wOmRlqfYqMmSI00Kl1OBEuNdCLNTNIhAZo9DiXb1an23XGKVPoPleFDP2c9ARdp61Ns1ARZyBiVLieCpUY6kWZjJkmNNCZVzgRKjXQm1UzUEQGaPY4k2tVpdj53l3T/9KsycMpdUp26m/UMXKStT7FRE2QhY1S6nAiWGulEmo2ZJDXSmFQ5Eyg10plUM1FHBGj2OJJoV6fZ992TpLLPcTL87v/iBAEXaSfSbMwkWcgYkypnAqVGOpNqIyZKjTQiTU4FSY10Kt1M1gEBmj0OJNnVKXb+eoV0//w6Gfj4PVLt3dkJBi7STqTZmEmykDEmVc4ESo10JtVGTJQaaUSanAqSGulUupmsAwI0exxIsqtT7Fu+QEbferKMvPNcZwi4SDuTaiMmykLGiDQ5FSQ10ql0az9ZaqT2KXIuQGqkcylnwpYL0OxpkeC169bLlVffIJu3bKlv2d8/W6649CKZOWO65aeHudPreuZb0vWrm2XgE6uk2j3V3InEjJyLdEwwNs9VgIVMrrwMnkCAGpkAjV1yE6BG5kbLwAkFqJEJ4dgNAU0FaPZEaPZcd/MSufCcxbL3HLs/tlvTczRRWFOWHSkjB31GRuadmWh/U3fiIm1q5uyMm4WMnXk1eVbUSJOzZ1/s1Ej7cmr6jKiRpmeQ+BGYKECzh2aPdb8TXU8uka6n/kG2nf6ASLnbuvlNNiEu0k6lW/vJspDRPkXOBUiNdC7lWk+YGql1epwMjhrpZNqZtMUCNHsiNHuCj3HxCJfmvw1jI+Ld1fOOs2TkoEWaB5t9eFykszdlxOQCLGSS27FnPgLUyHxcGTWZADUymRt75SdAjczPlpERaIcAzZ6Y6kuWLpeNmzbJBeeeKb09PTI4NBJzBDbPU2DKU7dKz3N3yqun3JfnYbQde8vWIZk2tUfb+AjMLYGh4VFvwj3dnW5NnNlqK0CN1DY1TgZGjXQy7VpPmhqpdXqcDK63p8vJeWc1aZo9MSXVC5tVw+fi88/yXtC8ZdtQzBHYPC+B0shW2fXuD8qWg86RbW/9eF6H0XrcweER6e2mKGqdJIeCG61UvNl2lssOzZqp6ixAjdQ5O+7FRo10L+e6z5gaqXuG3Itv2hT+ETtN1mn2xNQLN3ti7s7mOQp0/+I6Ka/5oQycdm+OR9F7aG6/1Ts/rkXHIwquZVz/+VIj9c+RSxFSI13KthlzpUaakSeiRCCqAM2eFlKrf/SY7LPPnPoncam7etTX4kWnRzVmuwIESoOvSt93T5LhP7tYRt92agFH1PMQXKT1zIurUbGQcTXz+s6bGqlvblyMjBrpYtb1njM1Uu/8EB0CcQVo9rQQe+LpZ+Wqa26sbzV/3tz6+3riYrN9fgLdP/2qlH//Exk49fv5HcSAkblIG5Akh0JkIeNQsg2ZKjXSkEQ5EiY10pFEGzRNaqRBySJUBCII0OyJgMQmeguUtr4kfXecIsOHfUFG9/+g3sHmHB0X6ZyBGT6WAAuZWFxsXIAANbIAZA4RWYAaGZmKDQsSoEYWBM1hEChIgGZPQdAcJj+B7kf/TsqvPCUDH1mR30EMGZmLtCGJciRMFjKOJNqgaVIjDUqWA6FSIx1IsmFTpEYaljDCRaCFAM0eThGjBTpeXyu9d39Sht//32X0zccbPZcsgucinYUiY2QlwEImK0nGyUqAGpmVJONkIUCNzEKRMbIUoEZmqclYCLRfgGZP+3NABCkEen70t1J6dY0MfnhZilHs2ZWLtD25tGEmLGRsyKJdc6BG2pVP02dDjTQ9g/bFT420L6fMyG0Bmj1u59/o2Xe8+pz0/mCRDB35ZansdZTRc8kqeC7SWUkyThYCLGSyUGSMLAWokVlqMlZaAWpkWkH2z1qAGpm1KOMh0F4Bmj3t9efoKQR6HvqclLZtlMGTvpFiFLt25SJtVz5Nnw0LGdMzaF/81Ej7cmryjKiRJmfPztipkXbmlVm5K0Czx93cGz3zjo1PS+/Kv5KhY78mlf7DjJ5LlsFzkc5Sk7HSCrCQSSvI/lkLUCOzFmW8NALUyDR67JuHADUyD1XGRKB9AjR72mfPkVMI9PzLBVIaHZLBE25JMYp9u3KRti+nJs+IhYzJ2bMzdmqknXk1dVbUSFMzZ2/c1Eh7c8vM3BSg2eNm3o2edfnlx6Xnh+fK0IIbpbL7u4yeS9bBc5HOWpTx0giwkEmjx755CFAj81BlzKQC1MikcuyXlwA1Mi9ZxkWgPQI0e9rjzlFTCPTef45Uy50ydNwNKUaxc1cu0nbm1dRZsZAxNXP2xk2NtDe3Js6MGmli1uyOmRppd36ZnXsCNHvcy7nRMy5v+Kn0PHCRDJ5wq4ztepDRc8kjeC7SeagyZlIBFjJJ5dgvLwFqZF6yjJtEgBqZRI198hSgRuapy9gIFC9As6d4c46YQqD33sVS7d1Zho65JsUo9u7KRdre3Jo4MxYyJmbN7pipkXbn17TZUSNNy5j98VIj7c8xM3RLgGaPW/k2erbldaul5+HLZPDEb8jYLm83ei55Bc9FOi9Zxk0iwEImiRr75ClAjcxTl7HjClAj44qxfd4C1Mi8hRkfgWIFaPYU683RUgj03v1pqc7cS4aO/HKKUezelYu03fk1bXYsZEzLmP3xUiPtz7FJM6RGmpQtN2KlRrqRZ2bpjgDNHndybfRMyy+ukp4fXSGDH14mYzPfbPRc8gyei3SeuowdV4CFTFwxts9bgBqZtzDjxxGgRsbRYtsiBKiRRShzDASKE6DZU5w1R0oh0HfXaVLZda4Mv++KFKPYvysXaftzbNIMWciYlC03YqVGupFnU2ZJjTQlU+7ESY10J9fM1A0Bmj1u5NnoWXY+/wPpfuzLMnDyd6U6/U+MnkvewXORzluY8eMIsJCJo8W2RQhQI4tQ5hhRBaiRUaXYrigBamRR0hwHgWIEaPYU48xRUgj03f4RqfzJoTJ86GUpRnFjVy7SbuTZlFmykDElU+7ESY10J9cmzJQaaUKW3IqRGulWvpmt/QI0e+zPsdEz7Pz326X7X78mA6d+X6pTdjV6LkUEz0W6CGWOEVWAhUxUKbYrSoAaWZQ0x4kiQI2MosQ2RQpQI4vU5lgI5C9Asyd/Y46QQqDvOwul8ubjZPjPLk4xiju7cpF2J9cmzJSFjAlZcitGaqRb+dZ9ttRI3TPkXnzUSPdyzoztFqDZY3d+jZ5d57PLpfsXN8jAaSul2jPT6LkUFTwX6aKkOU4UARYyUZTYpkgBamSR2hyrlQA1spUQPy9agBpZtDjHQyBfAZo9+foyegqBKf90rIy+5SMyfMj5KUZxa1cu0m7lW/fZspDRPUPuxUeNdC/nOs+YGqlzdtyMjRrpZt6Ztb0CNHvsza3RM+t6aql0/dutsu30fxHpmmL0XIoMnot0kdocq5UAC5lWQvy8aAFqZNHiHG8yAWok54duAtRI3TJCPAikE6DZk86PvXMRqMqUbx0uIwd+RkbecVYuR7B1UC7StmbWzHmxkDEzbzZHTY20ObvmzY0aaV7ObI+YGml7hpmfawI0e1zLuAHz7Xrif4u6s2fbGY+IlMoGRKxPiFyk9ckFkYiwkOEs0E2AGqlbRtyOhxrpdv51nD01UsesEBMCyQVo9iS3Y888BEYHZco/HSMjB/+ljMz7bB5HsHpMLtJWp9e4ybGQMS5l1gdMjbQ+xUZNkBppVLqcCJYa6USamaRDAjR7HEq2CVPt+uXXpevfb5dtn3zIhHC1i5GLtHYpcTogFjJOp1/LyVMjtUyLs0FRI51NvbYTp0ZqmxoCQyCRAM2eCGwrVz0sS5et8LacP2+uXHDumdLb0xNhTzaJI1AafkP6vnOCjLzzXBmZe0acXdm2JsBFmlNBJwEWMjplg1iUADWS80AnAWqkTtkgFmok5wAC9gnQ7GmR0yeeflaWfnuFXHHpRTJzxnRZsnS5t8fiRafbdza0eUbdP/ualF9YJQOfuK/NkZh7eBYy5ubOxshZyNiYVbPnRI00O3+2RU+NtC2j5s+HGml+DpkBAkEBmj0tzgfV3Onv310WLjjK2zLc/OF0ykagNLBR+r73YRl+90Uy+vaPZTOog6NwkXYw6RpPmYWMxslxNDRqpKOJ13Ta1EhNE+NwWNRIh5PP1K0UoNkzSVoHh4bk+ptuk3kHza03e9auWy/X3bxELjxnsew9Z08rT4p2TKr7saukvP4nMvDxH7Tj8NYck4u0Nam0YiIsZKxIo1WToEZalU7jJ0ONND6F1k2AGmldSpmQ4wI0eyI0e044/hg5+MADvC3DzZ6Oe892/BTKZvq9m56U/5h3oWzZ68RsBmQUBBBAAAEEEEAAAQQQQAABYwVm7TzN2Nh1CJxmT4Rmz2R39tDsye40/uNh12Q3GCMhgAACCCCAAAIIIIAAAggYK0CzJ13qaPa08OOdPelOMPYuVoDbb4v15miTC/CIAmeIbgLUSN0y4nY81Ei386/j7KmROmaFmBBILkCzp4Udn8aV/ORiz+IFuEgXb84RmwuwkOHs0E2AGqlbRtyOhxrpdv51nD01UsesEBMCyQVo9kSwW7nqYVm6bIW35fx5c+WCc8+U3p6eCHuyCQLFCnCRLtabo00uwEKGM0Q3AWqkbhlxOx5qpNv513H21Egds0JMCCQXoNmT3I49EdBOgIu0dilxOiAWMk6nX8vJUyO1TIuzQVEjnU29thOnRmqbGgJDIJEAzZ5EbOyEgJ4CXKT1zIurUbGQcTXz+s6bGqlvblyMjBrpYtb1njM1Uu/8EB0CcQVo9sQVY3sENBbgIq1xchwMjYWMg0nXfMrUSM0T5Fh41EjHEm7AdKmRBiSJEBGIIUCzJwYWmyKguwAXad0z5FZ8LGTcyrcJs6VGmpAld2KkRrqTa1NmSo00JVPEiUA0AZo90ZzYCgEjBLhIG5EmZ4JkIeNMqo2ZKDXSmFQ5ESg10ok0GzVJaqRR6SJYBFoK0OxpScQGCJgjwEXanFy5ECkLGReybNYcqZFm5cv2aKmRtmfYvPlRI83LGREjMJkAzR7ODwQsEuAibVEyLZgKCxkLkmjZFKiRliXU8OlQIw1PoIXhUyMtTCpTclqAZo/T6WfyCCCAAAIIIIAAAggggAACCCBgmwDNHtsyynwQQAABBBBAAAEEEEAAAQQQQMBpAZo9TqefySOAAAIIIIAAAggggAACCCCAgG0CNHtsyyjzQQABBBBAAAEEEEAAAQQQQAABpwWcbvYMDg3J9TfdJo8/+Yx3Eiw64zRZuOCo+gnx+hub5YtfuVY2bHjZ+95ll5wnBx94wKQnTKt9Vq56WJYuW+GNMX/eXLng3DOlt6fH6ZOQyW8XeOLpZ+Wqa270vtHfP1uuuPQimTljuvfn4M/inD+TnXOtzldy47ZAqxrp6/jbqT+3qmmtzjlqpNvnXKvZT1Yj1b5Rz9ngcaiRrdT5eTOBVufb2nXr5cqrb5DNW7Y0/Htmo3GpkZxvaQXUOfS1G26VxYtOl73n7DlhuCTXWGpk2oywvzqHNmx4yTsnw3939NfhrLXzOU+cbvYsWbrcU1Unnn9xXfSp07yGjn8Bn3fQXK8BpC7Y1928RC48Z/EOhTN80jbbR/0ldem3V9QX8MHj55NeRjVJIHyOqcL45FPP1BfP6s/9e8yecH7O2mWXCYUzPN/Jzrkk57hJnsSaXmCyGtnoYt2qgd3qnKNGps+ZzSO0qpHh8yuKBTUyihLbNBOYrEaG/14Z/nOjMamRnGtpBILNx+nTpsnlnz9/wpolyTWWGpkmI+wb/AeaBUcfMWHNomri9+68R844/aPejQ9q26/f8s0dztugIjUy/jnlbLOnUdc7eNFWf6lUf774/LO8Oysa/SVS/Xzjpk31xXirfdT2/f271+8eChfQ+OljD5sEwl3vVg3GcDPI/xfEvz77s/U70CY75157/fWW57hNvswlnkCrGumP5p9j6s/B5qT6MzUynjlbTy7QqkY2+pfD4IjUSM6wLAVa1cjwNZy/R2apz1iTCTS7s6fVOoQayXmVl0Cr67M6bqOGOH+PTJ8RZ5s9jRbSwcXzb55bM+EuHH/hov7r34IWPgEbNW/8BpLqWqpHxvy7ftQ4rRbz6dPLCCYJhO/0avWvgOHtwxfpRn+xDJ5zr72+ueU5bpIfsWYr0KpGqn+FCZ6D4eZjo2YPNTLbHLk2WqsaqX6+6qFH6izhf9mmRrp2xuQ736g18qc//5X3L9V+TfT/EZEamW9+XB69UbOn1d8J1eNe1EiXz5p85x6l2dOoprLWTp8Xp5s9wTt3FGW42XPfDx+c8P6JVo9dqYVMs338Zs8Jxx9Tv+uCZk/6E9imEcL/4jJZsyfKXWH+hb3ZOaeaPXHPcZu8mcvkAuE7FcM18qFHHpvw/HWjZk/4CNRIzro0ApPVyLe9ZV/vH1SC9U6dk6seWj3h3WfB41Mj02SDfVvVSP+xhH9YtkK2bN7qvbcn/G5IaiTnUR4CkzV74qxDqJF5ZMfNMVs1e6I+hs3fI+OfP043e8Lv4Il7Z0+ji3TwnTz+v9qo/3JnT/yT07U9Wv2rte8R5ZlWtW2rf8Xhzh7XzrB48231r9bLlt854S4Kf/TJ3tvDnT3xcsDWEwUmq5GNmj2t7o6kRnKGpRFoVSNf/uMrEx6V9s/HBUcfOeHDQIIxUCPTZIR9fYGkd/aEBamRnFNZCUzW7PHPs1bvIVWxUCPjZ8TZZk+UZ61bvbMnzM07e+KfgOyxXaDV+yj8Itfq5WVBU97ZwxmWVKBVjQyPG+XOHmpk0mywnxJoVSMb3fnT7BNpfFFqJOdWUoFWNXKyf4EOfiJN8PjUyKTZYL+gQNJ39jRSpEZybmUh0KzZE6fRo+KgRsbPhrPNHkWV9tO4ws8R8obw+Ccge2wXaPVJM60e3Wr0Yj0+RYEzLI1AlE/j8seP8s4eamSabLBvlBoZbIZHeYk9NZLzKo3AZDUyfE1udGcPf49Mo8++zQSaNXtafRoXf4/knMpLYLKPXg++zzZ8fGpk+ow43ewJfkShogw/S+1fmDdseNmTvuyS8+rv2/GbRcFP41Lfa7WPOtmXLlvhjdfqY4rTp5cRTBMIfkRhf//sCe+aCL98VM0t+ALSRhdptc1k51yr89U0P+LNVqBVjQweLUqzhxqZbX5cHG2yGhmud+EaSo108YzJd86tamTwfG3098zwQoYamW++bB89fD42WmtM9ndCaqTtZ0jx8wvXwOB62j/f1PvMgl/Bj2inRqbPmdPNnvR8jIAAAggggAACCCCAAAIIIIAAAgjoJUCzR698EA0CCCCAAAIIIIAAAggggAACCCCQSoBmTyo+dkYAAQQQQAABBBBAAAEEEEAAAQT0EqDZo1c+iAYBBBBAAAEEEEAAAQQQQAABBBBIJUCzJxUfOyOAAAIIIIAAAggggAACCCCAAAJ6CdDs0SsfRIMAAggggAACCCCAAAIIIIAAAgikEqDZk4qPnRFAAAEEEEAAAQQQQAABBBBAAAG9BIxq9gwODcn1N90mjz/5jFx2yXly8IEHeJpPPP2s3PfDB+WCc8+U3p6ezIVff2OzfO2GW2XxotNl7zl7Rh5/7br1cuXVN8jmLVu8ffr7Z8sVl14kM2dMr4+xctXDsnTZCu/P8+fNbTiHJUuXS3//7rJwwVETjh3cd/q0aXL558+PFV/kibAhAggggAACCCCAAAIIIIAAAggYI2Bks2fWLrvIxk2b6o2RvJo9weZSkmaKimvDH16uN2lU0yYc99Jvr6g3gNTP1ZdqKqmvYDNn0RmnTWj2qLGD+4b/bMwZSKAIIIAAAggggAACCCCAAAIIIJCpgJHNnqOOeK88/MijcsLxx3h394SbPcE7aoJNGtU8efKpZybcPRNusDTSTXpnT3iscEMmfMdOs4ZNozt7wnNRc77u5iVy4TmLubsn018RBkMAAQQQQAABBBBAAAEEEEDALAEjmz2qyaO+/Ee3fvPcmvr/Hxoali9+5VpZ9KnT6o2gr9/yTe8Rp51mzpzwOFbUJk7U7VqlPtigUduqR9LmHTS3fsdOs4ZNo2aPiknNc/asWV7z6qFHHpMNG16q3xXUKhZ+jgACCCCAAAIIIIAAAggggAACdgoY2+x521v29ZoljRo/wceb/Eex/KZKsHES9fGvLJo94UaOH5d/d5I6veI0e9T2ai4v/m6dPPfbFyTJY2Z2ntLMCgEEEEAAAQQQQAABBBBAAAG3BYxt9gQf3/If61J3uATv8vFf1tyswbNs+Z0NX3wcPiXSNnv8x8r++uzP1l8qHW5CxW32qLuEgnfyqMaVfwdTnJdIu336M3sEEEAAAQQQQAABBBBAAAEE7BMwutnjN0yCL2xWzZ7J7uzxGzennnyS9+jX2Wf++YRPx2qU4jTNnkaNHv8Yad7ZE97Xf6zLf3zNvlOVGSGAAAIIIIAAAggggAACCCCAQBQBo5s9aoLqjparrrmx/rHl/jt7Fhx9pPcunEZ3vKi7Yh796c9ln73mRHrHTbNmT6uXIrf6eaMXNqs5+Z/G1awppL6v5rDqodX1T/Lizp4opzvbIIAAAggggAACCCCAAAIIIGC/gPHNHv/uHpUq9RiXenSr2adx+emc7G6bYMqDH73uf3/+vLn14zT6dK/g/sGPTg9+/7JLzqs/zhXcJji239BZumxFfdfwe3nU6kvDXAAABaJJREFU3T2rHnrE+znv7LH/l5UZIoAAAggggAACCCCAAAIIIBBFwKhmT5QJFbmNarYc8q6D642bIo/NsRBAAAEEEEAAAQQQQAABBBBAAIFGAjR7Ep4X6tGuW277x0jv/El4CHZDAAEEEEAAAQQQQAABBBBAAAEEYgvQ7IlNxg4IIIAAAggggAACCCCAAAIIIICAvgI0e/TNDZEhgAACCCCAAAIIIIAAAggggAACsQVo9sQmYwcEEEAAAQQQQAABBBBAAAEEEEBAXwGaPfrmhsgQQAABBBBAAAEEEEAAAQQQQACB2AI0e2KTsQMCCCCAAAIIIIAAAggggAACCCCgrwDNHn1zQ2QIIIAAAggggAACCCCAAAIIIIBAbAGaPbHJ2AEBBBBAAAEEEEAAAQQQQAABBBDQV4Bmj765ITIEEEAAAQQQQAABBBBAAAEEEEAgtgDNnthk7IAAAggggAACCCCAAAIIIIAAAgjoK0CzR9/cEBkCCCCAAAIIIIAAAggggAACCCAQW4BmT2wydkAAAQQQQAABBBBAAAEEEEAAAQT0FaDZo29uiAwBBBBAAAEEEEAAAQQQQAABBBCILUCzJzYZOyCAAAIIIIAAAggggAACCCCAAAL6CtDs0Tc3RIYAAggggAACCCCAAAIIIIAAAgjEFqDZE5uMHRBAAAEEEEAAAQQQQAABBBBAAAF9BWj26JsbIkMAAQQQQAABBBBAAAEEEEAAAQRiC9DsiU3GDggggAACCCCAAAIIIIAAAggggIC+AjR79M0NkSGAAAIIIIAAAggggAACCCCAAAKxBWj2xCZjBwQQQAABBBBAAAEEEEAAAQQQQEBfAZo9+uaGyBBAAAEEEEAAAQQQQAABBBBAAIHYAjR7YpOxAwIIIIAAAggggAACCCCAAAIIIKCvAM0efXNDZAgggAACCCCAAAIIIIAAAggggEBsAZo9scnYAQEEEEAAAQQQQAABBBBAAAEEENBXgGaPvrkhMgQQQAABBBBAAAEEEEAAAQQQQCC2AM2e2GTsgAACCCCAAAIIIIAAAggggAACCOgrQLNH39wQGQIIIIAAAggggAACCCCAAAIIIBBbgGZPbDJ2QAABBBBAAAEEEEAAAQQQQAABBPQVoNmjb26IDAEEEEAAAQQQQAABBBBAAAEEEIgtQLMnNhk7IIAAAggggAACCCCAAAIIIIAAAvoK0OzRNzdEhgACCCCAAAIIIIAAAggggAACCMQWoNkTm4wdEEAAAQQQQAABBBBAAAEEEEAAAX0FaPbomxsiQwABBBBAAAEEEEAAAQQQQAABBGIL0OyJTcYOCCCAAAIIIIAAAggggAACCCCAgL4CNHv0zQ2RIYAAAggggAACCCCAAAIIIIAAArEFaPbEJmMHBBBAAAEEEEAAAQQQQAABBBBAQF8Bmj365obIEEAAAQQQQAABBBBAAAEEEEAAgdgCNHtik7EDAggggAACCCCAAAIIIIAAAgggoK8AzR59c0NkCCCAAAIIIIAAAggggAACCCCAQGwBmj2xydgBAQQQQAABBBBAAAEEEEAAAQQQ0FeAZo++uSEyBBBAAAEEEEAAAQQQQAABBBBAILYAzZ7YZOyAAAIIIIAAAggggAACCCCAAAII6CtAs0ff3BAZAggggAACCCCAAAIIIIAAAgggEFuAZk9sMnZAAAEEEEAAAQQQQAABBBBAAAEE9BWg2aNvbogMAQQQQAABBBBAAAEEEEAAAQQQiC1Asyc2GTsggAACCCCAAAIIIIAAAggggAAC+grQ7NE3N0SGAAIIIIAAAggggAACCCCAAAIIxBag2RObjB0QQAABBBBAAAEEEEAAAQQQQAABfQVo9uibGyJDAAEEEEAAAQQQQAABBBBAAAEEYgvQ7IlNxg4IIIAAAggggAACCCCAAAIIIICAvgL/H73q72svhtsqAAAAAElFTkSuQmCC",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data['Total demand'] = data['MW (VDG)'] + data['MW (NDG)']\n",
"data = data[start:end]\n",
"fig_demands_nov2018 = data['Total demand'].resample('1H').mean().iplot(\n",
" title='Smurfit Kappa: Heat demand in MW', \n",
" yTitle='MW', \n",
" asFigure=True,\n",
" dimensions=(800, 400)\n",
")\n",
"fig_demands_nov2018"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "variable=new_cl
index=%{x}
value=%{y}",
"legendgroup": "new_cl",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "new_cl",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
"2018-11-01T00:00:00",
"2018-11-01T00:15:00",
"2018-11-01T00:30:00",
"2018-11-01T00:45:00",
"2018-11-01T01:00:00",
"2018-11-01T01:15:00",
"2018-11-01T01:30:00",
"2018-11-01T01:45:00",
"2018-11-01T02:00:00",
"2018-11-01T02:15:00",
"2018-11-01T02:30:00",
"2018-11-01T02:45:00",
"2018-11-01T03:00:00",
"2018-11-01T03:15:00",
"2018-11-01T03:30:00",
"2018-11-01T03:45:00",
"2018-11-01T04:00:00",
"2018-11-01T04:15:00",
"2018-11-01T04:30:00",
"2018-11-01T04:45:00",
"2018-11-01T05:00:00",
"2018-11-01T05:15:00",
"2018-11-01T05:30:00",
"2018-11-01T05:45:00",
"2018-11-01T06:00:00",
"2018-11-01T06:15:00",
"2018-11-01T06:30:00",
"2018-11-01T06:45:00",
"2018-11-01T07:00:00",
"2018-11-01T07:15:00",
"2018-11-01T07:30:00",
"2018-11-01T07:45:00",
"2018-11-01T08:00:00",
"2018-11-01T08:15:00",
"2018-11-01T08:30:00",
"2018-11-01T08:45:00",
"2018-11-01T09:00:00",
"2018-11-01T09:15:00",
"2018-11-01T09:30:00",
"2018-11-01T09:45:00",
"2018-11-01T10:00:00",
"2018-11-01T10:15:00",
"2018-11-01T10:30:00",
"2018-11-01T10:45:00",
"2018-11-01T11:00:00",
"2018-11-01T11:15:00",
"2018-11-01T11:30:00",
"2018-11-01T11:45:00",
"2018-11-01T12:00:00"
],
"xaxis": "x",
"y": [
28.75,
38.75,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5,
47.5
],
"yaxis": "y"
}
],
"layout": {
"autosize": true,
"legend": {
"title": {
"text": "variable"
},
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
1
],
"range": [
"2018-11-01",
"2018-11-01 12:00"
],
"title": {
"text": "index"
},
"type": "date"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
27.708333333333332,
48.541666666666664
],
"title": {
"text": "value"
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABHsAAAFoCAYAAADHK/d8AAAAAXNSR0IArs4c6QAAIABJREFUeF7tnX+8VHWd/99nZoBrBUSksIQrYj9UUtRixQqzol8QpharpWuKAoq5EqKLd7+yru4ii0iShiI/YjNJo2hTUTPa3Kgk8beSv1lNZdVEMlQQ7sx8H59Z5+7cYe6dc+ZzZj6/nvOPwj2f83m/n6/PnXvnyTmfExWLxaLwggAEIAABCEAAAhCAAAQgAAEIQAACEPCCQITs8SJHmoAABCAAAQhAAAIQgAAEIAABCEAAAiUCyB4WAgQgAAEIQAACEIAABCAAAQhAAAIQ8IgAssejMGkFAhCAAAQgAAEIQAACEIAABCAAAQgge1gDEIAABCAAAQhAAAIQgAAEIAABCEDAIwLIHo/CpBUIQAACEIAABCAAAQhAAAIQgAAEIIDsYQ1AAAIQgAAEIAABCEAAAhCAAAQgAAGPCCB7PAqTViAAAQhAAAIQgAAEIAABCEAAAhCAALKHNQABCEAAAhCAAAQgAAEIQAACEIAABDwigOzxKExagQAEIAABCEAAAhCAAAQgAAEIQAACyB7WAAQgAAEIQAACEIAABCAAAQhAAAIQ8IgAssejMGkFAhCAAAQgAAEIQAACEIAABCAAAQgge1gDEIAABCAAAQhAAAIQgAAEIAABCEDAIwLIHo/CpBUIQAACEIAABCAAAQhAAAIQgAAEIIDsYQ1AAAIQgAAEIAABCEAAAhCAAAQgAAGPCCB7PAqTViAAAQhAAAIQgAAEIAABCEAAAhCAALKHNQABCEAAAhCAAAQgAAEIQAACEIAABDwigOzxKExagQAEIAABCEAAAhCAAAQgAAEIQAACyB7WAAQgAAEIQAACEIAABCAAAQhAAAIQ8IgAssejMGkFAhCAAAQgAAEIQAACEIAABCAAAQgge1gDEIAABCAAAQhAAAIQgAAEIAABCEDAIwLIHo/CpBUIQAACEIAABCAAAQhAAAIQgAAEIIDsYQ1AAAIQgAAEIAABCEAAAhCAAAQgAAGPCCB7PAqTViAAAQhAAAIQgAAEIAABCEAAAhCAALKHNQABCEAAAhCAAAQgAAEIQAACEIAABDwigOzxKExagQAEIAABCEAAAhCAAAQgAAEIQAACyB7WAAQgAAEIQAACEIAABCAAAQhAAAIQ8IgAssejMGkFAhCAAAQgAAEIQAACEIAABCAAAQgge1gDEIAABCAAAQhAAAIQgAAEIAABCEDAIwLIHo/CpBUIQAACEIAABCAAAQhAAAIQgAAEIIDsYQ1AAAIQgAAEIAABCEAAAhCAAAQgAAGPCCB7PAqTViAAAQhAAAIQgAAEIAABCEAAAhCAALKHNQABCEAAAhCAAAQgAAEIQAACEIAABDwigOzxKExagQAEIAABCEAAAhCAAAQgAAEIQAACyB7WAAQgAAEIQAACEIAABCAAAQhAAAIQ8IgAssejMGkFAhCAAAQgAAEIQAACEIAABCAAAQgge1gDEIAABCAAAQhAAAIQgAAEIAABCEDAIwLIHo/CpBUIQAACEIAABCAAAQhAAAIQgAAEIIDsYQ1AAAIQgAAEIAABCEAAAhCAAAQgAAGPCCB7PAqTViAAAQhAAAIQgAAEIAABCEAAAhCAALKHNQABCEAAAhCAAAQgAAEIQAACEIAABDwigOzxKExagQAEIAABCEAAAhCAAAQgAAEIQAACyB7WAAQgAAEIQAACEIAABCAAAQhAAAIQ8IgAssejMGkFAhCAAAQgAAEIQAACEIAABCAAAQgge1gDEIAABCAAAQhAAAIQgAAEIAABCEDAIwLIHo/CpBUIQAACEIAABCAAAQhAAAIQgAAEIIDsYQ1AAAIQgAAEIAABCEAAAhCAAAQgAAGPCCB7PAqTViAAAQhAAAIQgAAEIAABCEAAAhCAALKHNQABCEAAAhCAAAQgAAEIQAACEIAABDwigOzxKExagQAEIAABCEAAAhCAAAQgAAEIQAACyB7WAAQgAAEIQAACEIAABCAAAQhAAAIQ8IgAssejMGkFAhCAAAQgAAEIQAACEIAABCAAAQgge1gDEIAABCAAAQhAAAIQgAAEIAABCEDAIwLIHo/CpBUIQAACEIAABCAAAQhAAAIQgAAEIIDsYQ1AAAIQgAAEIAABCEAAAhCAAAQgAAGPCCB7PAqTViAAAQhAAAIQgAAEIAABCEAAAhCAALKHNQABCEAAAhCAAAQgAAEIQAACEIAABDwigOzxKExagQAEIAABCEAAAhCAAAQgAAEIQAACyB7WAAQgAAEIQAACEIAABCAAAQhAAAIQ8IgAssejMGkFAhCAAAQgAAEIQAACEIAABCAAAQggezTXwOYt2zXPwHAIJCOwR++stPXJytZtO5MN5GgIaBDIZTPynr695OU/v6VxFoZCIDmBIQP3EH7WJufGCD0Ce727j7y6bZd05At6J2I0BBIQGNC3t+x4Ky/bd+YTjOJQCOgTUD9reflHANmjmSm/gGoCZHhiAsiexMgYkAIBZE8KEDlFQwSQPQ1hY5AmAWSPJkCGN0QA2dMQNgalQADZkwJEC0+B7NEMBdmjCZDhiQkgexIjY0AKBJA9KUDkFA0RQPY0hI1BmgSQPZoAGd4QAWRPQ9gYlAIBZE8KEC08BbJHMxRkjyZAhicmgOxJjIwBKRBA9qQAkVM0RADZ0xA2BmkSQPZoAmR4QwSQPQ1hY1AKBJA9KUC08BTIHs1QkD2aABmemACyJzEyBqRAANmTAkRO0RABZE9D2BikSQDZowmQ4Q0RQPY0hI1BKRBA9qQA0cJTIHs0Q0H2aAJkeGICyJ7EyBiQAgFkTwoQOUVDBJA9DWFjkCYBZI8mQIY3RADZ0xA2BqVAANmTAkQLT4Hs0QwF2aMJkOGJCSB7EiNjQAoEkD0pQOQUDRFA9jSEjUGaBJA9mgAZ3hABZE9D2BiUAgFkTwoQLTwFskczFGSPJkCGJyaA7EmMjAEpEED2pACRUzREANnTEDYGaRJA9mgCZHhDBJA9DWFjUAoEfJc9Gx58TBZcs0oWzZ0uA/r3rUls9a3rZP19G+XimZOkra13ClTNnwLZo5kBskcTIMMTE0D2JEbGgBQIIHtSgMgpGiKA7GkIG4M0CSB7NAEyvCECyJ6GsDEoBQKuyR4lZlbdfGeP8qYSC7InhUUS4imQPSGmbrZnZI9Z/qHOjuwJNXnzfSN7zGcQYgXInhBTN98zssd8BqFW4JrsSZoTsicpMY4vEbBV9tz/QCQ/vSlLShCAAAQgAAEIQAACEIAABCAAgW4JLF3YK3U63QmWBdeuKs01Y8pEUVfoXDhvWefcQwYNlMXzzpXh+wwp/V35HDPOmCjtc5bI5pe2yCXnn1b6WuUtV5ue3SxTz7+89PXySx133LgxXc5zyvFfkBkXfbf0d9Vz1bqNq/q8p319fKluV17cxqWZlK2y57Y7MnLX+oxmdwyHAAQgAAEIQAACEIAABCAAAZ8JNEP2bH1tm0ybdYUoUTNq5P4lfNV/pwTL3u/bs/Pr1bdnKdlzyjlzZfzY0V320qkWM0rKrF13r0w5aUJpnrKkmdM+uXTu8nkqZU31XLXO2T53qcyZdXpJPu3YsVNmz18ug/ca6IzwQfZoftfaKnv+/QdZeXpTJKeenJd9hxU1u2S4TQS4jcumNMKphdu4wsnatk65jcu2RMKoh9u4wsjZti65jcu2RMKpp1m3camreF58eUunqFHSRe21090myEoGtV+6RM4784SSYOnu6qA4mymruYcNHVy6uqfWeWqJp8qrhSrHl1dCnNvBbFo1yB7NNGyUPa+/IbLomqy8/kYks9s7JJfTbJLhVhFA9lgVRzDFIHuCidq6RpE91kUSREHIniBitq5JZI91kQRTULNkj7rCpnx1zJBB7y1dGTP6sBGdt1cpwEqqLFu5pgvrFQtndV6RU+spWrVkT/nqncoTla/kqSVpylfqlOupPKc6h6p1zdr1u62Bgw/YL/bG0KYXELJHMwEbZc+m/xZZcV1OBg4UOeesDs0OGW4bAWSPbYmEUQ+yJ4ycbewS2WNjKv7XhOzxP2MbO0T22JhKGDU1S/ZUCpVDRuzXKX7UVTvlK2vUbVzlK32qr7aJe2WPEka3/XJ9l/1+KvcGalT2VIsp11YDskczMRtlz12/z8htP8/IyIML8pVjCpodMtw2Asge2xIJox5kTxg529glssfGVPyvCdnjf8Y2dojssTGVMGpqluxR9MpXzKgrYh569OlOsaOu+rns6htkzgWTZUD/viXQjcgeNU5dhTNxwlGde/+ov6sne+LcxqXO49KGzNWrFdmj+f1ro+z52c1Zuff+SCaML8iojyB7NCO2bjiyx7pIgigI2RNEzFY2ieyxMhbvi0L2eB+xlQ0ie6yMJYiimil7ylJFiZ7y7VkKavUmymVBo27pSnIbV1n2VG6cXL0hc60re6r3E6q+Nax8jsqneqlevnfj7TLt5C9LW1tv69cGskczIhtlz+JlWXnhhUimTc3L4EFszqwZsXXDkT3WRRJEQcieIGK2sklkj5WxeF8Ussf7iK1sENljZSxBFNVM2VOWOBvuf2y3vW6q99lZcNFZsuLG2zuf4BX3Nq5KoaTmU3v1lF/qypxa+/nUe8JXpZDq7pHuti8OZI9mQrbJnldfFbny6pwUCiL/fCH79WjGa+VwZI+VsXhfFLLH+4itbRDZY200XheG7PE6XmubQ/ZYG433hTVb9ngP0NIGkT2awdgme/7wWCQ3/Cgre+9dlMmn5jW7Y7iNBJA9Nqbif03IHv8ztrVDZI+tyfhdF7LH73xt7Q7ZY2sy/teF7PEzY2SPZq62yZ7/+nVGfnlnRo4YXZAvfo79ejTjtXI4ssfKWLwvCtnjfcTWNojssTYarwtD9ngdr7XNIXusjcb7wpA9fkaM7NHM1TbZc+OPs7LxD5Ec/9W8jDiQ/Xo047VyOLLHyli8LwrZ433E1jaI7LE2Gq8LQ/Z4Ha+1zSF7rI3G+8KQPX5GjOzRzNUm2VPIi1y1OCevvCIyc3pe+vVD9mjGa+VwZI+VsXhfFLLH+4itbRDZY200XheG7PE6XmubQ/ZYG433hSF7/IwY2aOZq02yZ/P/RHLNkqzs8Y6iXDCT/Xo0o7V2OLLH2mi8LgzZ43W8VjeH7LE6Hm+LQ/Z4G63VjSF7rI7H6+KQPX7Gi+zRzNUm2fPAg5Gs/llWPvSBopz4NWSPZrTWDkf2WBuN14Uhe7yO1+rmkD1Wx+Ntccgeb6O1ujFkj9XxeF0cssfPeJE9mrnaJHt+/ous/PauSMZ+Ki9HjuEWLs1orR2O7LE2Gq8LQ/Z4Ha/VzSF7rI7H2+KQPd5Ga3VjyB6r4/G6OGSPn/EiezRztUn2XHd9Vp58OpJTT87LvsOQPZrRWjsc2WNtNF4XhuzxOl6rm0P2WB2Pt8Uhe7yN1urGkD1Wx+N1ccgeP+NF9mjmaovsefPNSK5clJE33oxkdnuH5HKajTHcWgLIHmuj8bowZI/X8VrdHLLH6ni8LQ7Z4220VjeG7LE6Hq+LQ/bYEe+Ca1eVCpkxZWIqBSF7NDHaInueeUZk+fdzMnCgyDlndWh2xXCbCSB7bE7H39qQPf5ma3tnyB7bE/KzPmSPn7na3hWyx/aE/K0P2WNHtsgeO3LorMIW2bP+7khuvT0rIw8uyFeOKVhGiXLSJIDsSZMm54pLANkTlxTHpU0A2ZM2Uc4XhwCyJw4ljkmbALInbaKcLy4BZE9cUs09DtnTXL6Jz26L7Ln5loxsuC8jE8YXZNRHkD2Jg3RoALLHobA8KhXZ41GYjrWC7HEsME/KRfZ4EqRjbSB7HAvMo3JDkj1bX9sm02ZdIePHjpZ//9HtsvmlLaX/v3jmJGlr611KdcODj8kp58wt/f/BB+wni+ZOlwH9+8rqW9fJM8+/WLrNaseOnTJ7/nKZOOEoGTVyf9n07Ga57OobZM4Fk0vH1nupc104b1mXOb534+2lP3MbVz16Lfq6LbJnyfdy8txzItOm5mXwIDZnblH8RqZB9hjBHvykyJ7gl4AxAMgeY+iDnhjZE3T8xppH9hhDH/zEzZQ9+bzII4+auRhh5Iczu2Vblj17v2/PkuBRLyVtRh82Qo4bN6YketrnLJHF886V4fsM6SJ41NdW3Xxnadzml16RqedfLl/8zOiSnKn8WlkadbewlOhR5ylLpI2P/7fs0dZH/uPnv0X22PTdaIPs2bpV5Iqr/ndH5n++kP16bFofzagF2dMMqpyzHgFkTz1CfL1ZBJA9zSLLeXsigOxhfZgggOwxQZ05FYFmy56pM3a1HHQ2K7J4Qa9uZc+MMyaWrshRL3X71LChg0uyp/pWqsordtSx7ZcukfPOPEEe2Pi0vPLqn+WpZ16QC84+UX712wdK51Ln6OlVviKoLJcqj+U2riYukzJ4NUX5Mi4VrjJ26vKu8qvyUi4bZM9jT0Sy8oas7D20KJMn5ZtIiFPbQADZY0MK4dWA7Akvc1s6RvbYkkRYdSB7wsrblm6RPbYkEV4dzZY9i5ab+Yx69uRsQ7Jn2co1XcaVP//v0adP561b9z/8pIwd85HS1ThjDj9I1v3+4dJ/ywKpu1VUffsXsqcF329l6GvWru9yz56SPe1zl8qcWaeXLuOqftkge369LpK1v8rKEaML8sXPmblErgURMcXbBJA9LAUTBJA9JqgzpyKA7GEdmCCA7DFBnTmRPawBUwSaKXtM9dTdvOXbuHq6sqd8lU+tc6hbsNQVPa+/uUOmnfxlefjxTaVbstRLXeFTb78eruwxsCLKl26pqdfft7HLlT22y55VP8nKwxsjOf6reRlxIPv1GFg+LZ0S2dNS3Ez2NgFkD0vBFAFkjynyYc+L7Ak7f1PdI3tMkWdeZM//3cZVvWePWh3Xr14r4z5zeEnklDdvvuT800q3bFXvAVRvvx51vuo9e35+5wb5wL7vY8+eZnwrVt4bp8BXy57K27gqb+FStby0dUczSop9zmJR7deTlVe2iPzDjIL064fsiQ3P0QPbemWlT5+MvPZ66+99dRQZZadAIJvNyLvfmZMtf9mZwtk4BQTiExg0oM34z9r41XKkLwQG9ustf36jQ/J5rpj2JVMX+uj/rl7y1lsF2bHLzC0vLjCixuYQUD9rQ3nVu7JHcah8Gpf682lfH9/5hCw1vrxvT/nOn8o9f+JyVGPKt4uVHQNP44pLL+ZxlY9PK1u2StlTfRoVyosvb+m88idfMCtXnn+hKJfMz0vfd0Uy/5Ld70mMiYHDHCIQRSKRRFJQpo8XBFpEIBKRTCYS0+95LWqXaSwikGXdWZRGOKWodVcoFIWftOFkbkOnmSgSter4Fc+GNMKqQb3n8fKPQFQshv12UmnUKuMdP3Z0p9Cp/PvK3bjVZVym9+x58OFIfvLTrHzoA0U58Wv8K4B/36K7d8RtXCGkbF+P3MZlXyahVMRtXKEkbVef3MZlVx6hVMNtXKEkbV+fId3G1Wz66mKSC+ctqznNkEEDOx/p3uw61PmDlz3VkKtv46r+um2y5461GfnN7zIy9lN5OXIM//7Uim8a03Mge0wnEOb8yJ4wc7eha2SPDSmEVwOyJ7zMbegY2WNDCmHWgOzxM3dkT1Wu1bKnvFlS5f14asiMKRNLI01f2XPdyqw8+VQkp56cl32HIXv8/Dbt2hWyJ4SU7esR2WNfJqFUhOwJJWm7+kT22JVHKNUge0JJ2r4+kT32ZZJGRcieOrKnenOm6tu7TMqeHTsi+faVWdm+XWR2e4fkcmksCc5hOwFkj+0J+VkfssfPXF3oCtnjQkr+1Yjs8S9TFzpC9riQkp81Inv8zBXZo5mrSdnz7B8jWbYiK3u+V+TsaR2anTDcFQLIHleS8qtOZI9febrUDbLHpbT8qRXZ40+WLnWC7HEpLb9qRfb4lWe5G2SPZq4mZc/d92TkllszMvLggnzlGB4NqhmlM8ORPc5E5VWhyB6v4nSqGWSPU3F5Uyyyx5sonWoE2eNUXF4Vi+zxKs7OZpA9mrmalD03rcnIPfdmZML4goz6CLJHM0pnhiN7nInKq0KRPV7F6VQzyB6n4vKmWGSPN1E61Qiyx6m4vCoW2eNVnMietOI0KXsWL83KC5sjmTY1L4MHsTlzWpnafh5kj+0J+VkfssfPXF3oCtnjQkr+1Yjs8S9TFzpC9riQkp81Inv8zJUrezRzNSV7XnstkssXZiWTEbno/7Ffj2aMTg1H9jgVlzfFInu8idK5RpA9zkXmRcHIHi9idK4JZI9zkXlTMLLHmyi7NILs0czVlOx54slIfvDDrOy9d1Emn5rX7ILhLhFA9riUlj+1Inv8ydK1TpA9riXmR73IHj9ydK0LZI9riflTL7LHnywrO0H2aOZqSvas+20kv/hlVo4YXZAvfo79ejRjdGo4ssepuLwpFtnjTZTONYLscS4yLwpG9ngRo3NNIHuci8ybgpE93kTJlT1pRmlK9vxodVYeeSSS47+alxEHsl9Pmpnafi5kj+0J+VkfssfPXF3oCtnjQkr+1Yjs8S9TFzpC9riQkp81Inv8zJUrezRzNSV7vv2dnGz9s8jM6Xnp1w/ZoxmjU8ORPU7F5U2xyB5vonSuEWSPc5F5UTCyx4sYnWsC2eNcZN4UjOzxJkqu7EkzShOy56WXI/nuNVl55zuK8g8z2a8nzTxdOBeyx4WU/KsR2eNfpq50hOxxJSm/6kT2+JWnK90ge1xJyr86kT3+Zao64soezVxNyJ6HH4lk1eqsfOiDRTnxBGSPZoTODUf2OBeZFwUje7yI0ckmkD1OxuZ80cge5yN0sgFkj5OxeVE0sseLGHdrAtmjmasJ2bP2PzPy699kZOyn8nLkGG7h0ozQueHIHuci86JgZI8XMTrZBLLHydicLxrZ43yETjaA7HEyNi+KRvZ4ESOyJ+0YTcieFddlZdN/R3LqyXnZdxiyJ+1MbT8fssf2hPysD9njZ64udIXscSEl/2pE9viXqQsdIXtcSMnPGpE9fubKlT2aubZa9ry1U+SyBTnZuVNkdnuH5HKaDTDcOQLIHuci86JgZI8XMTrZBLLHydicLxrZ43yETjaA7HEyNi+KRvZ4ESNX9qQdY6tlz3PPRbLke1nZ870iZ0/rSLsdzucAAWSPAyF5WCKyx8NQHWkJ2eNIUJ6ViezxLFBH2kH2OBKUh2UiezwMlQ2a9UNttey5596M3LQmI4ceUpRjj2ZzZv0E3TsDsse9zHyoGNnjQ4pu9oDscTM316tG9rieoJv1I3vczM2HqpE9PqS4ew/cxqWZa6tlz023ZOSe+zIyYXxBRn2koFk9w10kgOxxMTX3a0b2uJ+hqx0ge1xNzu26kT1u5+dq9cgeV5Nzv25kj/sZ1uoA2aOZa6tlz6LFWXnxpUimTc3L4EFszqwZn5PDkT1OxuZ80cge5yN0tgFkj7PROV04ssfp+JwtHtnjbHTOF47scT7Cmg0gezRzbaXs2bYtksu+nZVMVuSif2S/Hs3onB2O7HE2OqcLR/Y4HZ/TxSN7nI7P2eKRPc5G53ThyB6n43O6eGSP0/F1WzyyRzPXVsqeJ5/KyHUrM7LPX4ucdgqyRzM6Z4cje5yNzunCkT1Ox+d08cgep+Nztnhkj7PROV04ssfp+JwuHtnjdHzInmbF10rZ85vfZeSOtRn52BEF+cJn2a+nWZnafl5kj+0J+VkfssfPXF3oCtnjQkr+1Yjs8S9TFzpC9riQkp81Inv8zJUrezRzbaXsuWFVVv7waCTHfzUvIw5kvx7N6JwdjuxxNjqnC0f2OB2f08Uje5yOz9nikT3ORud04cgep+Nzunhkj9PxcWVPs+JrpeyZ/+2c/GWbyMzpeenXD9nTrExtPy+yx/aE/KwP2eNnri50hexxISX/akT2+JepCx0he1xIyc8akT1+5sqVPZq5tkr2/OmVSK5clJW+7xI5bwb79WjG5vRwZI/T8TlbPLLH2eicLxzZ43yETjaA7HEyNueLRvY4H6GzDSB7nI2ux8KRPZq5tkr2PLIxkh/9JCv7f7AgXz+B/Xo0Y3N6OLLH6ficLR7Z42x0zheO7HE+QicbQPY4GZvzRSN7nI/Q2QaQPc5Gh+xpZnStkj1qY2a1QfNnPl2QT34C2dPMTG0/N7LH9oT8rA/Z42euLnSF7HEhJf9qRPb4l6kLHSF7XEjJzxqRPX7mypU9mrm2SvYsX5GVZ/4Yyakn52XfYezXoxmb08ORPU7H52zxyB5no3O+cGSP8xE62QCyx8nYnC8a2eN8hM42gOxxNjqu7GlmdK2QPTt3FeXSeb0knxeZ3d4huVwzO+LcthNA9tiekJ/1IXv8zNWFrpA9LqTkX43IHv8ydaEjZI8LKflZI7LHz1y5skcz11bInudfiOTaZVnZa0+Rb57J5syakTk/HNnjfIRONoDscTI2L4pG9ngRo3NNIHuci8yLgpE9XsToZBPIHidjq1s0sqcuop4PaIXsuefejNy0JiOHHlKUY4/Oa1bMcNcJIHtcT9DN+pE9bubmQ9XIHh9SdK8HZI97mflQMbLHhxTd7AHZ42Zu9apG9tQjVOfrrZA9P70pK/c/EMnRXyrIRw9jc2bNyJwfjuxxPkInG0D2OBmbF0Uje7yI0bkmkD3OReZFwcgeL2J0sglkj5Ox1S0a2VMXUc8HtEL2XHV1Tl7+k8i0qXkZPIjNmTUjc344ssf5CJ1sANnjZGxeFI3s8SJG55pA9jgXmRcFI3u8iNHJJpA9TsZWt2hkT11EZmXP66+LzFuQk2xW5J/+kf16NOPyYjiyx4sYnWsC2eNcZN4UjOzxJkqnGkH2OBWXN8Uie7yJ0rlGkD3ORRarYGRPLEzdH9TsK3ue3hTJv/8gK/v8dVFOO4X9ejTj8mI4sseLGJ1rAtnjXGTeFIzs8SZKpxpB9jgVlzfFInu8idK5RpA9zkUWq2BkTyxM5mTPr9dFsvZXWfn4EUX5/GeRPZroVXLrAAAgAElEQVRxeTEc2eNFjM41gexxLjJvCkb2eBOlU40ge5yKy5tikT3eROlcI8ge5yKLVTCyJxYmc7Ln+hsy8vgTGTn+K3kZMYL9ejTj8mI4sseLGJ1rAtnjXGTeFIzs8SZKpxpB9jgVlzfFInu8idK5RpA9zkUWq2BkTyxM5mTPv83PyhtvRjJzel769UP2aMblxXBkjxcxOtcEsse5yLwpGNnjTZRONYLscSoub4pF9ngTpXONIHuciyxWwcieWJjMyJ5Xtoh857s5ede7RM6fwebMmlF5MxzZ402UTjWC7HEqLq+KRfZ4FaczzSB7nInKq0KRPV7F6VQzyB6n4opdLLInNqraBzZzg+aHN0ay6idZOWD/onztb9mvRzMqb4Yje7yJ0qlGkD1OxeVVscger+J0phlkjzNReVUosserOJ1qBtnjVFyxi0X2xEbVetlz2x0ZuWt9RsZ+Oi9HfoJbuDSj8mY4ssebKJ1qBNnjVFxeFYvs8SpOZ5pB9jgTlVeFInu8itOpZpA9TsUVu1hkT2xUrZc9S5Zn5bnnIzn17/Ky777IHs2ovBmO7PEmSqcaQfY4FZdXxSJ7vIrTmWaQPc5E5VWhyB6v4nSqGWSPU3HFLhbZExtVa2VPR4fIJZfmpFgUmd3eIbmcZqEM94YAssebKJ1qBNnjVFxeFYvs8SpOZ5pB9jgTlVeFInu8itOpZpA9TsUVu1hkT2xUrZU9z2+O5NqlWRm0V1HOOoP9ejRj8mo4sserOJ1pBtnjTFTeFYrs8S5SJxpC9jgRk3dFInu8i9SZhpA9zkSVqFBkTwWuHTt2yuz5y0t/c/HMSdLW1rv0/6tvXScXzltW+v/xY0d3+VqzNmj+/d0ZWXN7Rg47tCjHTED2JFrVnh+M7PE8YEvbQ/ZYGkwAZSF7AgjZwhaRPRaGEkBJyJ4AQra0RWSPpcFoloXseRtgWfSsWbu+i9DZ8OBjsuCaVbJo7nQZ0L+vLLh2VWnEjCkTS/9tluz5yU+z8uDDkRz9pYJ89LCCZswM94kAssenNN3pBdnjTla+VYrs8S1RN/pB9riRk29VInt8S9SdfpA97mSVpFJkz9u0lMQZNnRw6U/r79vYefVO+e+PGzem9LVq+dMs2bPwqqxseTWSaVPzMngQmzMnWdS+H4vs8T1hO/tD9tiZSwhVIXtCSNm+HpE99mUSQkXInhBStrNHZI+duehWhewR6XK1jrplqyx7FFx1W9fow0ZIWfZsenaztM9dKnNmnS7D9xnSlCt7Xn9DZN7lOcnlIpndvks3Y8Z7RgDZ41mgjrSD7HEkKA/LRPZ4GKoDLSF7HAjJwxKRPR6G6khLyB5HgkpYZvCyR8mdZ55/sfO2rFqyZ+KEo2TUyP1LaKtlz6vbdiZEXv/wx54QWf79SIYPEznjdK7qqU8srCN65zLSu1dGXt/eEVbjdGuUQDYTybv2yMlrbyCgjQYR4OTv6dtbmvGzNkCUtJyAQP939ir9nM0X+D0sATYO1SSgfs7u3FWQnR1s4aCJkuEJCaiftbz8IxC87FG3aS1buWa3ZNVGzO3fPEnmXPWDHq/s2bEz/c2Tb72jKLf+oihjPxnJMV+K/Ft1dKRFQH3ozmQi2cUvAlocGZyMQBRF0jsXyVu7+AU0GTmO1iXQ1jsrzfhZq1sX4/0m0KdXRnZ2FKVYRPb4nbRd3fXKZaRQKCIZ7YoliGrUz1pe/hEIXvZUR1p5ZY96GpeJPXuuW5mRJ5/KyPETCzLiAD5Y+fdtp9cRt3Hp8WN0YwS4jasxbozSJ8BtXPoMOUNyAtzGlZwZI/QJcBuXPkPO0BgBbuNqjJvto5A9VQlVyx4TT+Oac1lWdmyPZOb0vPTrx78o2f5N1Or6kD2tJs58igCyh3VgigCyxxT5sOdF9oSdv6nukT2myDMvssfPNWBU9lQ+7nzIoIGyeN65MmTQe3fbFLmV6Ktlj5pb/d2F85aVylC3d108c5Koq37UK+2ncW3ZIrLwuznp27co530r/VvEWsmSuZpDANnTHK6ctWcCyB5WiCkCyB5T5MOeF9kTdv6mukf2mCLPvMgeP9eAUdlTvkVq3KcPl8uuvkFOPG5s6QlX6mqaVTff2UWq2Io/bdnzwEORrP6PrBy4f1FO+Ftkj625m6wL2WOSfrhzI3vCzd5058ge0wmEOT+yJ8zcTXeN7DGdQLjzI3v8zN6Y7Nn62jZpv3SJnHfmCaWreSplj3rilfrznAsmy4D+fa0mn7bsueW2jNy9ISOf/UxBxnyc/XqsDt9QccgeQ+ADnxbZE/gCMNg+sscg/ICnRvYEHL7B1pE9BuEHPjWyx88FYKXsCfnKnsVLsvLC/0Qy6Rt5GbYP+/X4+W2n1xWyR48foxsjgOxpjBuj9Akge/QZcobkBJA9yZkxQp8AskefIWdojACypzFuto8yJnsUmPL+OBecfaJctfynpdu4Bry7r0ybdYVMnHCUHDdujO38Ut2zp5AXuehfc6WeZ7d3SO5//5cXBLoQQPawIEwQQPaYoM6cigCyh3VgggCyxwR15kT2sAZMEUD2mCLf3HmNyh7VmrqK55Rz5nbpcsXCWTJq5P7N7Tyls6d5G9cfnxNZ+r2cDBpUlLOmsl9PShF5dxpkj3eROtEQsseJmLwsEtnjZazWN4XssT4iLwtE9ngZqxNNIXuciClxkcZlT+KKLRuQpuy5a30kt92RlY8cVpAvf4n9eiyL2ppykD3WRBFUIcieoOK2qllkj1VxBFMMsieYqK1qFNljVRxBFYPs8TNuZI9mrmnKnh/9JCOPbMzIl79UlI8cxpU9mtF4OxzZ4220VjeG7LE6Hq+LQ/Z4Ha+1zSF7rI3G68KQPV7Ha3VzyB6r42m4OGOyRz2NS+3N89CjT9cs/uAD9pNFc6cH9TSuBd/Jyp//HJVu4VK3cvGCQC0CyB7WhQkCyB4T1JlTEUD2sA5MEED2mKDOnMge1oApAsgeU+SbO68x2dNdWzt27OzyGPbmtq9/9rSu7Hn9DZF5l+ekV07kwvYO/cI4g7cEkD3eRmt1Y8geq+Pxujhkj9fxWtscssfaaLwuDNnjdbxWN4fssTqehouzTvaoTtRTup55/kWZMWViw421amBasufxJyO5/ofZ0uPW1WPXeUGgOwLIHtaGCQLIHhPUmVMRQPawDkwQQPaYoM6cyB7WgCkCyB5T5Js7r5WyZ9Ozm0tX98y5YHIwt3H9el1G1v4qI0ccXpAvfp7NmZu77N0+O7LH7fxcrR7Z42py7teN7HE/Qxc7QPa4mJr7NSN73M/Q1Q6QPa4m13PdyB7NXNO6sueGH2flD3+I5NgvF+TQkcgezVi8Ho7s8Tpea5tD9lgbjfeFIXu8j9jKBpE9VsbifVHIHu8jtrZBZI+10WgVZqXsWXDtqlJTId3GdcWVWXl1ayRnTsnLXw1mc2atVe35YGSP5wFb2h6yx9JgAigL2RNAyBa2iOyxMJQASkL2BBCypS0ieywNRrMsY7Knp6dxjR87Wi6eOUna2nprttf84Wlc2bNzl8i/XJorFfvPF3ZIFDW/bmZwlwCyx93sXK4c2eNyem7XjuxxOz9Xq0f2uJqc23Uje9zOz+XqkT0up9d97cZkjy8405A9f/xjJEtXZEuPW1ePXecFgZ4IIHtYHyYIIHtMUGdORQDZwzowQQDZY4I6cyJ7WAOmCCB7TJFv7rzIHk2+acieu+/JyC23ZuSQg4ty3DHIHs1IvB+O7PE+YisbRPZYGUsQRSF7gojZuiaRPdZFEkRByJ4gYraySWSPlbFoF9VS2dPTrVvVnRx8wH6yaO70IJ7GddPNGbnn/ox84bMF+dgRbM6svao9PwGyx/OALW0P2WNpMAGUhewJIGQLW0T2WBhKACUhewII2dIWkT2WBqNZVktlj2atVg5P48qexUuz8sLmSE75u7wM35fNma0M2qKikD0WhRFQKciegMK2rFVkj2WBBFIOsieQoC1rE9ljWSABlYPs8TNsZI9mrmnInov+JSeFgsisczvkHe/ULIjh3hNA9ngfsZUNInusjCWIopA9QcRsXZPIHusiCaIgZE8QMVvZJLLHyli0i0L2aCLUlT0v/0nkqqtz0q+fyMzpHZrVMDwEAsieEFK2r0dkj32ZhFIRsieUpO3qE9ljVx6hVIPsCSVp+/pE9tiXSRoVGZU9m57dLFPPv1w2v7Rlt15C2bPnoUci+fHqrHzwAwU56Wvs15PGovb9HMge3xO2sz9kj525hFAVsieElO3rEdljXyYhVITsCSFlO3tE9tiZi25VxmTPjh07Zfb85TL6sBFyyIj95PrVa+W8M0+QtrbesuDaVTLm8INk1Mj9dftr+njdK3vuWJuR3/wuI0eOKcrYT/EkrqYH5sEEyB4PQnSwBWSPg6F5UjKyx5MgHWsD2eNYYJ6Ui+zxJEgH20D2OBhajJKNyR71ZK72S5eUBI96XXb1DTLngsmlp29tePAxWXXznXLxzEkl+WPzS1f2fP/6rDz1dCTHfzUvIw5kc2abs7alNmSPLUmEVQeyJ6y8beoW2WNTGuHUguwJJ2ubOkX22JRGWLUge/zM2wrZM+DdfeXSK6+XC84+sSR71O1dlfLHZvS6suff5mfljTcjOeesDhk40OZOqc0WAsgeW5IIqw5kT1h529QtssemNMKpBdkTTtY2dYrssSmNsGpB9viZtzHZU3kb13HjxpRu3Ro2dLCo/1996zpZf99G76/sef31SOYtyEpbH5H2f2BzZj+/xdLvCtmTPlPOWJ8Asqc+I45oDgFkT3O4ctaeCSB7WCEmCCB7TFBnTkUA2ePnOjAme6pxqtu6ps26Qh569GkZMmigLJ53rgzfZ4j11HWu7HniyUh+8MOs7D20KJMnsV+P9WFbUiCyx5IgAisD2RNY4Ba1i+yxKIyASkH2BBS2Ra0ieywKI7BSkD1+Bm6N7HEVr47sWffbjPzilxkZ9dGCTBjHk7hcXQOtrhvZ02rizKcIIHtYB6YIIHtMkQ97XmRP2Pmb6h7ZY4o88yJ7/FwDyB7NXHVkz49+kpVHNkZy9PiCfPQjyB7NKIIZjuwJJmqrGkX2WBVHUMUge4KK25pmkT3WRBFUIcieoOK2qllkj1VxpFaMMdlTvm1r1KH7y4wpE1NrqNUn0pE93/luTl7ZIjJlUl6GDuVJXK3OztX5kD2uJud23cget/NzuXpkj8vpuVs7ssfd7FyuHNnjcnpu147scTu/7qo3JntUQeoR66ecM7eztvFjRzuxKXMlzEZlT0de5OJ/zUkUiVzY3iG5rJ8LjK7SJ4DsSZ8pZ6xPANlTnxFHNIcAsqc5XDlrzwSQPawQEwSQPSaoM6cigOzxcx0YlT3VSNVTuC6ct6z01wcfsJ8smju99Ch2m1+Nyp7nn4/k2uVZ2fO9ImdP40lcNmdsW23IHtsSCaMeZE8YOdvYJbLHxlT8rwnZ43/GNnaI7LExlTBqQvb4mbNVskc9fn3ZyjVByJ577svITbdk5MMfLsrfHseTuPz89mpOV8ie5nDlrD0TQPawQkwRQPaYIh/2vMiesPM31T2yxxR55kX2+LkGjMqeyit5FN6QbuO6eU1GNtybkbGfLsiRn2BzZj+/vZrTFbKnOVw5K7KHNWAnAWSPnbn4XhWyx/eE7ewP2WNnLiFUhezxM2Vjsif0DZrVLVzqVq6/+3pePvB+Nmf289urOV0he5rDlbMie1gDdhJA9tiZi+9VIXt8T9jO/pA9duYSQlXIHj9TNiZ7fMHZ6J49F/1LTgoFkfO+lZe+fZE9vqyHVvSB7GkFZeaoJsBtXKwJUwSQPabIhz0vsifs/E11j+wxRZ55kT1+rgFkj2aujcge9bh19dj1fv1EZk5nc2bNCIIbjuwJLnIrGkb2WBFDkEUge4KM3XjTyB7jEQRZALInyNitaBrZY0UMqReB7NFE2ojseeSRSH60Oiv7DRf5xknIHs0IghuO7AkucisaRvZYEUOQRSB7gozdeNPIHuMRBFkAsifI2K1oGtljRQypF4Hs0UTaiOxZ+58Z+fVvMvLxIwry+c+yObNmBMENR/YEF7kVDSN7rIghyCKQPUHGbrxpZI/xCIIsANkTZOxWNI3ssSKG1ItA9mgibUT2/GBlRp54KiNfOTYvIw9ivx7NCIIbjuwJLnIrGkb2WBFDkEUge4KM3XjTyB7jEQRZALInyNitaBrZY0UMqReB7NFE2ojs+bf5OXnjTZGzzsjLoL2QPZoRBDcc2RNc5FY0jOyxIoYgi0D2BBm78aaRPcYjCLIAZE+QsVvRNLLHihhSLwLZo4k0qex5441I/u3yrPTpI/KP/8B+PZr4gxyO7AkyduNNI3uMRxBsAcieYKM32jiyxyj+YCdH9gQbvfHGkT3GI2hKAcgeTaxJZc9TT4t8//qcDH1fUaacltecneEhEkD2hJi6+Z6RPeYzCLUCZE+oyZvtG9ljln+osyN7Qk3efN/IHvMZNKMCZI8m1aSy57d3ZeTnv8jIYYcW5ZgJyB5N/EEOR/YEGbvxppE9xiMItgBkT7DRG20c2WMUf7CTI3uCjd5448ge4xE0pQBkjybWpLLnx6uz8tAjkYz7fF5GH85+PZr4gxyO7AkyduNNI3uMRxBsAcieYKM32jiyxyj+YCdH9gQbvfHGkT3GI2hKAcgeEVlw7SpZtnJNJ+AVC2fJqJH7l/686dnNMvX8y2XzS1s6v37wAfvJornTZUD/vpJU9iz8bk62bBGZdEpehv01sqcpq9rzkyJ7PA/Y0vaQPZYGE0BZyJ4AQrawRWSPhaEEUBKyJ4CQLW0R2WNpMJplBS97tr62Tb534+0y7eQvS1tb75LcaZ+7VObMOl2G7zNktz9X804iewp5kYv+NSdRJNJ+Xl76tCF7NNdvkMORPUHGbrxpZI/xCIItANkTbPRGG0f2GMUf7OTInmCjN944ssd4BE0pIHjZU01VyZ9ps66QGWdMLF3dUy1/dGTP85sjuXZpVvZ8b1HOnsZ+PU1Z0QGcFNkTQMgWtojssTCUQEpC9gQStGVtInssCySQcpA9gQRtYZvIHgtDSaEkZE8VxA0PPibtc5bI4nnndl7ZU3kbV+UtXGpokit77r0vIz+7JSMHHlCUEyYie1JYv0GeAtkTZOzGm0b2GI8g2AKQPcFGb7RxZI9R/MFOjuwJNnrjjSN7jEfQlAKQPW9jrdybp3LPnmrqan+fF1/eIhfPnFS67Wvb9o7/PaT49i1Z6h6t8kv9XcWff/KzovzmLpEvjBX5/Ngo1pg4523omBj17nbe7saofst9NnLeMr9qdpXn7e6YyjHVx+jUm3ZP5Vp66qlWvTV6Uh+6e+Uysn1nhTCsXGs6fSfJIMWeSt8yjWSZpN7uvk8rv8m7yyDtY7pjl/Y8cXqOc0yxKJlMJEo0vvFWN6K6Vex6qrfe90EtvrXWXuV7ePn/q9dnI8d0dw7dnsp9J1lXJvuOk1NFT33f0ev/ftZW/1DmzxBoEoF3tmVl+1sFKVR+XzVpLk4LgTIB9XO2I1+QXXm2emBVtJZA3z1yrZ2Q2VpCANlThbn6Nq7qFJQUuuzqG2TOBZNLGzR3yp4YcX37u0X543Mik06O5KADYwzgEAjUINArG4kSPl1kD6Qg0GQCmSiSPfpk5I0dXJXYZNScvoqA+gU0yc9aAEIgDQLInjQoco6kBJA9SYlxfFoEkD1pkbTrPMieGnmoq3eGDR0sx40bs9tXq2VPktu4LvqXnBQKIt86u0MGDLBrIVCNOwS4jcudrHyqlNu4fErTrV64jcutvHypltu4fEnSrT64jcutvHyqltu4fErz/3oJXvYoebN23b0y5aQJJSrl27nmtE8ubdD88zs3yAf2fV9p/x71UiJIvWZMmVj6b1zZ8+qrIldclZN+/Yoyczr/Mu7nt1NrukL2tIYzs3QlgOxhRZgigOwxRT7seZE9YedvqntkjynyzIvs8XMNBC97duzYKbPnL5c1a9d3Jly5Z4/asPmUc+Z2fm382NGd+/UkkT0bH83IjasyMnzfopzyd8geP7+dWtMVsqc1nJkF2cMasIMAsseOHEKrAtkTWuJ29IvssSOHEKtA9viZevCyRzfWuFf2/PLOrPzXryMZ/TcFGfeFgu60jA+YALIn4PANts6VPQbhBz41sifwBWCofWSPIfCBT4vsCXwBGGwf2WMQfhOnRvZowo0re37ww6w88WQkx0zIy2GHssO+JvaghyN7go7fWPPIHmPog58Y2RP8EjACANljBHvwkyJ7gl8CxgAge4yhb+rEyB5NvHFlz9z5WXnzzUjOmJyXIX+F7NHEHvRwZE/Q8RtrHtljDH3wEyN7gl8CRgAge4xgD35SZE/wS8AYAGSPMfRNnRjZo4k3juxRkkfJnj5tRblgZl4yGc1JGR40AWRP0PEbax7ZYwx98BMje4JfAkYAIHuMYA9+UmRP8EvAGABkjzH0TZ0Y2aOJN47s2fTfIiuuy8nQ9xVlymlszqyJPPjhyJ7gl4ARAMgeI9iZVESQPSwDEwSQPSaoMyeyhzVgigCyxxT55s6L7NHkG0f2/O6ujNz+i4wcekhRjj0a2aOJPPjhyJ7gl4ARAMgeI9iZFNnDGjBEANljCHzg0yJ7Al8ABttH9hiE38SpkT2acOPInh+vzspDj0Ty+c8W5ONH8CQuTeTBD0f2BL8EjABA9hjBzqTIHtaAIQLIHkPgA58W2RP4AjDYPrLHIPwmTo3s0YQbR/ZccVVWXn01km+c1CH7DdeckOHBE0D2BL8EjABA9hjBzqTIHtaAIQLIHkPgA58W2RP4AjDYPrLHIPwmTo3s0YRbT/YUiyL/dElOokjk/HPz8s538CQuTeTBD0f2BL8EjABA9hjBzqTIHtaAIQLIHkPgA58W2RP4AjDYPrLHIPwmTo3s0YRbT/Zs/p9IrlmSlb32FPnmmR2aszEcAiLIHlaBCQLIHhPUmVMRYINm1oEJAsgeE9SZE9nDGjBFANljinxz50X2aPKtJ3vufyCSn96UlQMPKMgJE9mvRxM3wwXZwyIwQwDZY4Y7syJ7WANmCCB7zHAPfVZkT+grwFz/yB5z7Js5M7JHk2492bPm9oz8/u6MHDmmKGM/xZO4NHEzHNnDGjBEANljCDzTcmUPa8AIAWSPEezBT4rsCX4JGAOA7DGGvqkTI3s08daTPdcuy8rzL0Tyt8fl5cMfZr8eTdwMR/awBgwRQPYYAs+0yB7WgBECyB4j2IOfFNkT/BIwBgDZYwx9UydG9mjirSd71ObMapPmvz8rL+8diOzRxM1wZA9rwBABZI8h8EyL7GENGCGA7DGCPfhJkT3BLwFjAJA9xtA3dWJkjybenmTP1q0i374yJ/37i5x7Dpsza6Jm+NsE2KCZpWCCALLHBHXmVATYoJl1YIIAsscEdeZE9rAGTBFA9pgi39x5kT2afHuSPY8+npEf3piR/YYX5RsnsV+PJmqGI3tYAwYJIHsMwg98amRP4AvAUPvIHkPgA58W2RP4AjDYPrLHIPwmTo3s0YTbk+z55Z0Z+a9fZ2T03xRk3Bd4EpcmaoYje1gDBgkgewzCD3xqZE/gC8BQ+8geQ+ADnxbZE/gCMNg+sscg/CZOjezRhNuT7LluZUaefCojE8YVZNRHkT2aqBmO7GENGCSA7DEIP/CpkT2BLwBD7SN7DIEPfFpkT+ALwGD7yB6D8Js4NbJHE25PsufS+VnZ/mYkkyflZe+hbM6siZrhyB7WgEECyB6D8AOfGtkT+AIw1D6yxxD4wKdF9gS+AAy2j+wxCL+JUyN7NOF2J3t27Ihkzrys9OlTlPNn5KVXL82JGA4BZA9rwCABZI9B+IFPjewJfAEYah/ZYwh84NMiewJfAAbbR/YYhN/EqZE9mnC7kz3PPCOy/Ps5GTq0KFMmsTmzJmaGVxDgaVwsBxMEkD0mqDOnIoDsYR2YIIDsMUGdOZE9rAFTBJA9psg3d15kjybf7mTPXesjue2OrBx6SFGOPRrZo4mZ4cge1oBhAsgewwEEPD2yJ+DwDbaO7DEIP+CpkT0Bh2+4dWSP4QCaND2yRxNsd7Lnx6uz8tAjkXz2M3kZ83H269HEzHBkD2vAMAFkj+EAAp4e2RNw+AZbR/YYhB/w1MiegMM33Dqyx3AATZoe2aMJtjvZs/CqnGx5VeSkrxfkg+/nSVyamBmO7GENGCaA7DEcQMDTI3sCDt9g68geg/ADnhrZE3D4hltH9hgOoEnTI3s0wXYne2ZfnJMoEjn3nA7p109zEoZDANnDGjBMANljOICAp0f2BBy+wdaRPQbhBzw1sifg8A23juwxHECTpkf2aIKtJXtefCmSRYuzsteeRfnmmezXo4mY4VUE2KCZJWGCALLHBHXmVASQPawDEwSQPSaoMyeyhzVgigCyxxT55s6L7NHkW0v2PPBgJKt/lpURBxTl+InIHk3EDEf2sAYsIIDssSCEQEtA9gQavOG2kT2GAwh0emRPoMFb0Dayx4IQmlACskcTai3Zc8ttGbl7Q0aOHFOQsZ9ivx5NxAxH9rAGLCCA7LEghEBLQPYEGrzhtpE9hgMIdHpkT6DBW9A2sseCEJpQArJHE2ot2bN4WVZeeCGSrxybl5EH8SQuTcQMR/awBiwggOyxIIRAS0D2BBq84baRPYYDCHR6ZE+gwVvQNrLHghCaUAKyRxNqLdmjNmdWr7Om5mXQIGSPJmKGI3tYAxYQQPZYEEKgJSB7Ag3ecNvIHsMBBDo9sifQ4C1oG9ljQQhNKAHZowm1Wva89prI5Qtz0r9fUc6dzn49mngZXoMAGzSzLEwQQPaYoM6cigCyh3VgggCyxwR15kT2sAZMEUD2mCLf3HmRPZp8q2XPY09EsvKGrOw3vCjfOAnZo4mX4cge1oAlBJA9lgQRYBnIngBDt6BlZI8FIQRYArInwNAtaRnZY0kQKVUu3f8AAB7PSURBVJeB7NEEWi17fvmrjPzXuoyMPrwg4z7P5syaeBmO7GENWEIA2WNJEAGWgewJMHQLWkb2WBBCgCUgewIM3ZKWkT2WBJFyGcgeTaDVsue6lVl58qlIJowryKiPIns08TIc2cMasIQAsseSIAIsA9kTYOgWtIzssSCEAEtA9gQYuiUtI3ssCSLlMpA9mkCrZc/c+Tl5802RSd/Iy7B92JxZEy/DkT2sAUsIIHssCSLAMpA9AYZuQcvIHgtCCLAEZE+AoVvSMrLHkiBSLgPZowm0Uva8tVPkX+fmpK2tKN86Oy977KF5coZDANnDGrCEALLHkiACLAPZE2DoFrSM7LEghABLQPYEGLolLSN7LAki5TKQPZpAK2XPs38UWbYiJ0OHFmXKJDZn1kTL8G4I8DQuloYJAsgeE9SZUxFA9rAOTBBA9pigzpzIHtaAKQLIHlPkmzsvskeTb6XsuWt9Rm67IyOHHVKUY45G9miiZTiyhzVgEQFkj0VhBFYKsiewwC1pF9ljSRCBlYHsCSxwi9pF9lgURoqlIHs0YVbKnlWrs/LwI5F8bmxBPvExNmfWRMtwZA9rwCICyB6LwgisFGRPYIFb0i6yx5IgAisD2RNY4Ba1i+yxKIwUS0H2aMKslD1XXJmTV7eKfP2EvOz/QTZn1kTLcGQPa8AiAsgei8IIrBRkT2CBW9IusseSIAIrA9kTWOAWtYvssSiMFEtB9mjCrJQ9sy/OSSYj8vdndch7BmiemOEQQPawBiwigOyxKIzASkH2BBa4Je0ieywJIrAykD2BBW5Ru8gei8JIsRRkjybMsux56eVIvntNVvbasyjfPJP9ejSxMrwHAmzQzPIwQQDZY4I6cyoCyB7WgQkCyB4T1JkT2cMaMEUA2WOKfHPnRfZo8i3LnvsfiOSnN2VlxAEFOX4i+/VoYmU4soc1YBkBZI9lgQRUDrInoLAtahXZY1EYAZWC7AkobMtaRfZYFkhK5SB7NEGWZc8tt2bk7nsy8skji/KZo7iyRxMrw5E9rAHLCCB7LAskoHKQPQGFbVGryB6LwgioFGRPQGFb1iqyx7JAUioH2SMiC65dJctWrulEumLhLBk1cv/OP6++dZ1cOG9Z6c/jx46Wi2dOkra23qU/l2XP4qVZeWFzJF85Ni8jD2Jz5pTWJ6epQYDbuFgWJggge0xQZ05FANnDOjBBANljgjpzIntYA6YIIHtMkW/uvMHLnq2vbZPv3Xi7TDv5yyWBs+nZzdI+d6nMmXW6DN9niGx48DFZcM0qWTR3ugzo37ckhtRrxpSJXWTPP12Sk2JR5IzJeRnyV8ie5i7bsM+O7Ak7f1PdI3tMkWdeZA9rwAQBZI8J6syJ7GENmCKA7DFFvrnzBi97qvEq+TNt1hUy44yJpat7lNwZNnSwHDduTOnQavmjruz5yzaR+d/OSf/+It/6Zodkss0NjbOHTQDZE3b+prpH9pgiz7zIHtaACQLIHhPUmRPZwxowRQDZY4p8c+dF9lTxVTKnfc4SWTzvXBky6L0ye/5yGX3YiE7ZU33lj5I9jz4eyQ9vzMr79yvKySeyX09zlyxnR/awBkwQQPaYoM6cigCyh3VgggCyxwR15kT2sAZMEUD2mCLf3HmRPW/zVRJn6vmXy+aXtkh5z54dO3aWZM/ECUd17uFTLXt27MzLLT8XuX1tQY76eCRfPSZqbmKcPXgC2UwkmUwkuzp46lvwi6GFAKIokt65SN7axbprIXamEpG23llRP2t5QaCVBPr0ysjOjqIU1T36vCDQIgK9chkpFIqSL7DuWoScad4moH7W8vKPALKnKtPK27gO+tDwulf2vLptpyxdEckTT4kcd3RRRv+Nf4uEjuwi0DuXkd69MvL69g67CqMarwkoyfiuPXLy2hu7vO6T5uwj8J6+vUX9rOUFgVYS6P/OXqWfs3zobiV15lI/Z3fuKshO/kGPxdBiAupnLS//CCB7amRauU9PnD17Lr0sK9u3RzLpG3kZtg8m3r9vE7s64jYuu/IIpRpu4wolafv65DYu+zIJoSJu4wohZft65DYu+zIJpSJu4/Iz6eBlj7ota+26e2XKSRNKCZdv55rTPrl061a9p3E9++J2ueTSnLS1FeXvzyrIu96J7PHzW8WerpA99mQRUiXInpDStqtXZI9deYRSDbInlKTt6hPZY1ceIVWD7PEz7eBlT3lfnjVr13cmXN6zp/wXq29dJxfOW1b64/ixo+XimZNKj2lXr7vu3yHLVmRl772LMvlU9hTw89vErq6QPXblEUo1yJ5QkravT2SPfZmEUBGyJ4SU7esR2WNfJqFUhOzxM+ngZY9urD++5S25/RcZOfSQohx7NLJHlyfj6xNA9tRnxBHpE0D2pM+UM8YjgOyJx4mj0iWA7EmXJ2eLRwDZE48TR6VPANmTPlMbzojs0Uxh4bVvycMbM/K5sXn5xMe4hUsTJ8NjEED2xIDEIakTQPakjpQTxiSA7IkJisNSJYDsSRUnJ4tJANkTExSHpU4A2ZM6UitOiOzRjOG8i3bK1q2RnHhCQT70QR5JrImT4TEIIHtiQOKQ1Akge1JHygljEkD2xATFYakSQPakipOTxSSA7IkJisNSJ4DsSR2pFSdE9mjGcPo5uySTETl7WocMfI/myRgOgRgEkD0xIHFI6gSQPakj5YQxCSB7YoLisFQJIHtSxcnJYhJA9sQExWGpE0D2pI7UihMiezRjULJnrz0L8s0zuapHEyXDYxJA9sQExWGpEkD2pIqTkyUggOxJAItDUyOA7EkNJSdKQADZkwAWh6ZKANmTKk5rTobs0YxCyZ4DDyzKCV9lc2ZNlAyPSQDZExMUh6VKANmTKk5OloAAsicBLA5NjQCyJzWUnCgBAWRPAlgcmioBZE+qOK05GbJHMwolez45piCf+RRX9miiZHhMAsiemKA4LFUCyJ5UcXKyBASQPQlgcWhqBJA9qaHkRAkIIHsSwOLQVAkge1LFac3JkD2aUSjZ85Vj8zLyIJ7EpYmS4TEJIHtiguKwVAkge1LFyckSEED2JIDFoakRQPakhpITJSCA7EkAi0NTJYDsSRWnNSdD9mhGoWTPmVPy8leDkT2aKBkekwCyJyYoDkuVALInVZycLAEBZE8CWByaGgFkT2ooOVECAsieBLA4NFUCyJ5UcVpzMmSPZhSbt2yXXbtEevXSPBHDIRCTALInJigOS5UAsidVnJwsAQFkTwJYHJoaAWRPaig5UQICyJ4EsDg0VQLInlRxWnMyZI9mFEr28IJAKwkge1pJm7nKBJA9rAVTBJA9psiHPS+yJ+z8TXWP7DFFnnmRPX6uAWSPZq7IHk2ADE9MANmTGBkDUiCA7EkBIqdoiACypyFsDNIkgOzRBMjwhgggexrCxqAUCCB7UoBo4SmQPZqhIHs0ATI8MQFkT2JkDEiBALInBYicoiECyJ6GsDFIkwCyRxMgwxsigOxpCBuDUiCA7EkBooWnQPZohoLs0QTI8MQEkD2JkTEgBQLInhQgcoqGCCB7GsLGIE0CyB5NgAxviACypyFsDEqBALInBYgWngLZoxkKskcTIMMTE0D2JEbGgBQIIHtSgMgpGiKA7GkIG4M0CSB7NAEyvCECyJ6GsDEoBQLInhQgWngKZI9mKMgeTYAMT0wA2ZMYGQNSIIDsSQEip2iIALKnIWwM0iSA7NEEyPCGCCB7GsLGoBQIIHtSgGjhKZA9mqEgezQBMjwxAWRPYmQMSIEAsicFiJyiIQLInoawMUiTALJHEyDDGyKA7GkIG4NSIIDsSQGihadA9miGguzRBMjwxASQPYmRMSAFAsieFCByioYIIHsawsYgTQLIHk2ADG+IALKnIWwMSoEAsicFiBaeAtmjGQqyRxMgwxMTQPYkRsaAFAgge1KAyCkaIoDsaQgbgzQJIHs0ATK8IQLInoawMSgFAsieFCBaeApkj2YoyB5NgAxPTADZkxgZA1IggOxJASKnaIgAsqchbAzSJIDs0QTI8IYIIHsawsagFAgge1KAaOEpkD0WhkJJEIAABCAAAQhAAAIQgAAEIAABCECgUQLInkbJMQ4CEIAABCAAAQhAAAIQgAAEIAABCFhIANljYSiUBAEIQAACEIAABCAAAQhAAAIQgAAEGiWA7GmUHOMgAAEIQAACEIAABCAAAQhAAAIQgICFBIKWPTt27JTZ85fLmrXrS9Fccv5pcty4MZ0xbX1tm0ybdYU89OjTpb9bsXCWjBq5f48x1huz+tZ1cuG8ZaVzjB87Wi6eOUna2npbuDQoqZkEulsH1Wsy7rqrt5Y3PPiYnHLO3FJLBx+wnyyaO10G9O/bzBY5t4UE4r7/LLh2lWy4/7G666Teuqv3fmghIkpqAoF67z/11lGtknpay6y7JoTo4CnrrQP1Prds5ZpEPxd7WsuNrGMHsVJyTAJqfQ0bOrjL5wo1tN77Ya3T1xsT92d7zNI5zGECai088/yLMmPKxM4uGv1sUe89lHXnxkIJWvaoN2L1Ut8Q5QU944yJJaFT/sYYfdiI0hv1pmc3S/vcpTJn1ukyfJ8hNdOtN0a9WS+4ZlXnB6jK+d1YLlSZBoGe1oFah9+78XaZdvKXSxJQHds+Z4ksnndut+tO1dTTWq5eu+rNef19GxGNaYTp0Dnivv+UPwDFkYJpv4c6hJNSYxKo9/5T/XMzzml7Wsv1fg7HOT/HuE+g3jqo/jkY5+divbXc0/uh+0TpIC6Byg/A1f+IXG8N1Zqj3pi4P9vj1s9xbhKoFIKnfX18F9nTyGeLeu+hrDt31kmwskct/PZLl8h5Z57Q+SG68ge1enO97OobZM4Fk0tXQNT6hVQd/+LLWzo/NNcbU235q79R3Fk2VKpDIMk6qJaQal71i8Sqm+/slIb11nK15Y8jLnX6Y6ydBOKsu/JaGXP4QV3EdCPrrt77oZ2UqCptAvXef2r9K2RlDWodTT3/cpnTPrnzytqe1vLWP2+r+7M77R45n30E6r3/VP9jW/XvY+WfvRMnHNV5ZUZPa3nAu/v2+DulfYSoqNkEal3ZU+/9MOm6U//4HOdne7N75fz2EKj3M1VVWuuzBZ9p7ckw7UqClT21PvBW/svOw49v2u3DTvUvB9XfGLXkTXmMulJD3TJWvlJIBcmH7rSXs/3nqyUNe1oH3a3TStlTby0v+v7PSmDKl3TWepO3nxwV6hCIs+7qvf9VS8Z66y7Oe6hOT4x1g0D1z83q95/KW2lUR0MGDexyJWO17Km3lrf8+S91f3a7QY4qdQj09PuY+llYXldf/Mzo0s/G6g/MtT5097SWB767325Xf8e5WkinR8baTaCW7Kn3fph03R30oeF8trB7GbS8ujiyp9bvb3ymbXlULZswaNlTeeWOIl79YUd9oK7cU6febVfql4vuxpRlj/pXovK+P8ielq1zayYqf1CJsw7i3t5Q/S+Y1WtZyZ7K+8aRPdYsh5YVUm/dqQ/Ile9dca46rLfulOxJ+h7aMiBM1DIC3X2IVrdMlz+oVL4fVkvF6kKTrmU1vt7P7pbBYKKWEejp9zEld8rr6LW/vCG/ufvhWHvZ9bSWlezp6XdK9mZsWfTWTNSd7En6+1jS91A+W1izBIwUUk/2xP1swWdaI/E1ZdKgZU/1Hjz1/mW73i+MXNnTlDXq1Unr/at0eT+o8nGD9xrY5b7bWjDqXWHBlT1eLaGGmqm37h7Y+HTnxvGVE/S0b0+9dceVPQ1F5d2gnv4lu5bsqSej661lruzxbgk11FC9K3uqP0DXk4y1pGHlWuXKnoZi8npQI1f21AIS5z2Uuwa8XkqJmutJ9iT5bMFn2kTYrT44WNlTb5+Tevd7d/ehu6d9friv1urvhZYVV28dJHkzVkXXW8v17hFvWeNMZJRAvXVXWVycK3vqrbtG3kONAmLyphCo9/5T61+tq/fTqy6MPXuaEpVXJ+3p/Wfcpw8v3foS5wrbSijs2ePVEml6M43s2VOrqKTvoXF+fje9eSYwRqA72ZP0s0W93+GS/E5pDAYTlwgEK3tU85W2vJGncVXf38jO5XxXxSGQ5Eky3f3gr9yzp95arvckhzg1c4z7BJI8OaHWL4u1/uVb9z3Ufap0UI9Avfef6icOVu9zUmuD5iTvodzSUC8hP79e7/ex6t/faj34YNqsK0pCSD2RVb3qreWe3g/9pExXPRGoJXvqraFae/bUG5PkZzuJ+U+gluyJc+sWn2n9XRtBy57y4l+zdn0p4epHJJbfdB969OnS11csnNW53075A3bl07jU39UbU/lIxvFjR/P4a3+/t3rsrLt1UP5gs/mlLV3GVz5GsdaH7nprufKRjHEeqR1oLN63Hff9J67sqbfu6r0feg+cBksE6r3/VK7L6venWrJHnbOntcy6Y+HV+32s+r2ret3V+tBdby3Xez8klTAIVL43qY6rN53v6f2wkXVX7/0wDOp0WbmuyjTKn1vjfLaolj313kNZd+6suaBljzsxUSkEIAABCEAAAhCAAAQgAAEIQAACEIhHANkTjxNHQQACEIAABCAAAQhAAAIQgAAEIAABJwgge5yIiSIhAAEIQAACEIAABCAAAQhAAAIQgEA8AsieeJw4CgIQgAAEIAABCEAAAhCAAAQgAAEIOEEA2eNETBQJAQhAAAIQgAAEIAABCEAAAhCAAATiEUD2xOPEURCAAAQgAAEIQAACEIAABCAAAQhAwAkCyB4nYqJICEAAAhCAAAQgAAEIQAACEIAABCAQj4BTsmfHjp0ye/5yWbN2vaxYOEtGjdy/1OWGBx+TVTffKRfPnCRtbb3jdZ7gqK2vbZP2S5fIeWeeIMP3GRJ75KZnN8vU8y+XzS9tKY05+ID9ZNHc6TKgf9/Oc6y+dZ1cOG9Z6c/jx46u2cOCa1fJsKGD5bhxY7rMXTl2yKCBsnjeuYnqi90IB0IAAhCAAAQgAAEIQAACEIAABCDgDAEnZc/gvQbKiy9v6RQjzZI9lXKpEZmi6nruhT91SholbarrXnDNqk4BpL6uXjOmTCz9t1LmXHL+aV1kjzp35djqPzuzAikUAhCAAAQgAAEIQAACEIAABCAAgVQJOCl7vjT2Y3LL2t/JxAlHla7uqZY9lVfUVEoaJU/W37exy9Uz1YKlFt1Gr+ypPle1kKm+Yqc7YVPryp7qXlTP7XOXypxZp3N1T6rfIpwMAhCAAAQgAAEIQAACEIAABCDgFgEnZY+SPOpVvnXr4cc3df7/9rfekmmzrpAZZ0zsFEHtc5aUbnEa8O6+XW7Hiitx4h5XL/pKQaOOVbekjT5sROcVO90Jm1qyR9Wk+tz7fXuW5NWt//l7eeb5FzuvCqpXC1+HAAQgAAEIQAACEIAABCAAAQhAwE8Czsqegz40vCRLaomfytubyrdilaVKpTiJe/tXGrKnWuSU6ypfnaSWVxLZo45XvTz+1B/lN3c/LI3cZubnkqYrCEAAAhCAAAQgAAEIQAACEIBA2ASclT2Vt2+Vb+tSV7hUXuVT3qy5O8Gz6Ps/q7nxcfWS0JU95dvK5rRP7txUulpCJZU96iqhyit5lLgqX8GUZBPpsJc/3UMAAhCAAAQgAAEIQAACEIAABPwj4LTsKQuTyg2blezp6cqesriZ9LVxpVu/Ljj7xC5Px6oVsY7sqSV6ynPo7NlTPbZ8W1f59jX/liodQQACEIAABCAAAQhAAAIQgAAEIBCHgNOyRzWormg55Zy5nY8tL+/Zo26PUo8qr3XFi7oq5ud33i0fev9fx9rjpjvZU29T5Hpfr7Vhs+qp/DSu7qSQ+nvVg5JV5Ue5c2VPnOXOMRCAAAQgAAEIQAACEIAABCAAAf8JOC97ylf3qKjUbVzq1q3unsZVjrOnq20qI6989Hr578ePHd05T62ne1WOr3x0euXfr1g4q/N2rspjKs9dFjoXzlvWObR6Xx51dc+ylWtKX2fPHv+/WekQAhCAAAQgAAEIQAACEIAABCAQh4BTsidOQ608RsmWMYcf1CluWjk3c0EAAhCAAAQgAAEIQAACEIAABCAAgVoEkD0Nrgt1a9elV14fa8+fBqdgGAQgAAEIQAACEIAABCAAAQhAAAIQSEwA2ZMYGQMgAAEIQAACEIAABCAAAQhAAAIQgIC9BJA99mZDZRCAAAQgAAEIQAACEIAABCAAAQhAIDEBZE9iZAyAAAQgAAEIQAACEIAABCAAAQhAAAL2EkD22JsNlUEAAhCAAAQgAAEIQAACEIAABCAAgcQEkD2JkTEAAhCAAAQgAAEIQAACEIAABCAAAQjYSwDZY282VAYBCEAAAhCAAAQgAAEIQAACEIAABBITQPYkRsYACEAAAhCAAAQgAAEIQAACEIAABCBgLwFkj73ZUBkEIAABCEAAAhCAAAQgAAEIQAACEEhMANmTGBkDIAABCEAAAhCAAAQgAAEIQAACEICAvQSQPfZmQ2UQgAAEIAABCEAAAhCAAAQgAAEIQCAxAWRPYmQMgAAEIAABCEAAAhCAAAQgAAEIQAAC9hJA9tibDZVBAAIQgAAEIAABCEAAAhCAAAQgAIHEBJA9iZExAAIQgAAEIAABCEAAAhCAAAQgAAEI2EsA2WNvNlQGAQhAAAIQgAAEIAABCEAAAhCAAAQSE0D2JEbGAAhAAAIQgAAEWkVg9a3rZP19G+XimZOkra13q6ZlHghAAAIQgAAEIOA0AWSP0/FRPAQgAAEIQMBOAhsefEza5yyRxfPOleH7DGm4SGRPw+gYCAEIQAACEIBAwASQPQGHT+sQgAAEIAAB2wkge2xPiPogAAEIQAACELCRALLHxlSoCQIQgAAEIOA4AXVlz4JrVsmiudNlQP++UpY2Xxr7MTlz1oJSd0MGDdztyp9Nz26WqedfLptf2tJJYPzY0V1u41LnunDess6vr1g4S0aN3F+2vrZNps26QvZ+355djl9w7SrZcP9jnbU4jpbyIQABCEAAAhCAQF0CyJ66iDgAAhCAAAQgAIGkBGrJHiVoTvv6eJkxZWLpdErCvPjylk4xUxY9c9onl+SNelVf2VP95+oxZeEzccJRcty4MVJdR9I+OB4CEIAABCAAAQi4SADZ42Jq1AwBCEAAAhCwnEB3V/ZUbrRcfYySP+pVlkHVsmf7W29J+6VL5LwzT+iyD1D1uPJ+QUoaqauLZpwxsVMeWY6N8iAAAQhAAAIQgEAqBJA9qWDkJBCAAAQgAAEIVBJIKnv26NNHZs9fLqMPG1G6Iqf8qrySZ/NLr+x2i1f5uMorhtTfKQG0bOUaueT807qcj5QgAAEIQAACEIBACASQPSGkTI8QgAAEIACBFhNoVPao26/Kt3CpkqtlT/vcpTJn1ul1n/BVlj3VEqjFGJgOAhCAAAQgAAEIGCGA7DGCnUkhAAEIQAACfhNoVPb0dGWPuo1LbcBc77as8tzqOPX498o9gPymTncQgAAEIAABCEDgfwkge1gJEIAABCAAAQikTiCp7FFP7KoeU958+dCDPtC5ibO6Yue2X67v8hQvNe65F/5Uul2resNmdWXQ1f/+H7s99Sv1hjkhBCAAAQhAAAIQsIgAsseiMCgFAhCAAAQg4AuBRmSP6r3yserqkesHH7CfPPTo0z0+er38CPcB7+5buvJn1KH7d27yvGPHztJeQEoGlR8D7wtj+oAABCAAAQhAAALdEUD2sDYgAAEIQAACEIAABCAAAQhAAAIQgIBHBJA9HoVJKxCAAAQgAAEIQAACEIAABCAAAQhAANnDGoAABCAAAQhAAAIQgAAEIAABCEAAAh4RQPZ4FCatQAACEIAABCAAAQhAAAIQgAAEIAABZA9rAAIQgAAEIAABCEAAAhCAAAQgAAEIeEQA2eNRmLQCAQhAAAIQgAAEIAABCEAAAhCAAASQPawBCEAAAhCAAAQgAAEIQAACEIAABCDgEQFkj0dh0goEIAABCEAAAhCAAAQgAAEIQAACEED2sAYgAAEIQAACEIAABCAAAQhAAAIQgIBHBJA9HoVJKxCAAAQgAAEIQAACEIAABCAAAQhAANnDGoAABCAAAQhAAAIQgAAEIAABCEAAAh4RQPZ4FCatQAACEIAABCAAAQhAAAIQgAAEIAABZA9rAAIQgAAEIAABCEAAAhCAAAQgAAEIeEQA2eNRmLQCAQhAAAIQgAAEIAABCEAAAhCAAASQPawBCEAAAhCAAAQgAAEIQAACEIAABCDgEQFkj0dh0goEIAABCEAAAhCAAAQgAAEIQAACEED2sAYgAAEIQAACEIAABCAAAQhAAAIQgIBHBJA9HoVJKxCAAAQgAAEIQAACEIAABCAAAQhAANnDGoAABCAAAQhAAAIQgAAEIAABCEAAAh4RQPZ4FCatQAACEIAABCAAAQhAAAIQgAAEIAABZA9rAAIQgAAEIAABCEAAAhCAAAQgAAEIeEQA2eNRmLQCAQhAAAIQgAAEIAABCEAAAhCAAASQPawBCEAAAhCAAAQgAAEIQAACEIAABCDgEQFkj0dh0goEIAABCEAAAhCAAAQgAAEIQAACEPj/0cvstwomriEAAAAASUVORK5CYII=",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import plotly.express as px\n",
"\n",
"fig = px.line(df['new_cl'])\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"def cost_function(th_load, cop, e_price, alt_heat_price, process_demand_MW):\n",
" return (\n",
" th_load / cop * e_price\n",
" + (demand - th_load) * alt_heat_price\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"max_load = min(heatpump.max_th_power, process_demand_MW)\n",
"min_load = heatpump.min_th_power"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"999999150.0"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cost_full_load = cost_function(\n",
" th_load=max_load,\n",
" cop=new_COP,\n",
" e_price = 30,\n",
" alt_heat_price=40,\n",
" process_demand_MW=25\n",
")\n",
"cost_full_load"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "dd1accba5c44bbc1a722925963d63420d7a225a16ee8ad40deae87a5c5fb7f29"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}