{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": "true" }, "source": [ "#### Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from datetime import timedelta\n", "import json\n", "import pprint\n", "from copy import deepcopy\n", "\n", "import cufflinks\n", "from matplotlib import pyplot as plt\n", "import numpy as np\n", "from numpy.polynomial import Polynomial\n", "import pandas as pd\n", "from tqdm.notebook import tqdm\n", "\n", "from pyrecoy.assets import Heatpump, Eboiler, GasBoiler\n", "from pyrecoy.colors import *\n", "from pyrecoy.converters import *\n", "from pyrecoy.financial import calculate_eb_ode, get_tax_tables, get_tax_rate, get_grid_tariffs_electricity\n", "from pyrecoy.framework import TimeFramework, CaseStudy\n", "from pyrecoy.plotting import ebitda_bar_chart, npv_bar_chart\n", "from pyrecoy.reports import CaseReport, ComparisonReport, BusinessCaseReport, SingleFigureComparison\n", "from pyrecoy.sensitivity import SensitivityAnalysis\n", "\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "metadata": { "collapsed": "true" }, "source": [ "#### Development backlog" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* SDE++\n", "* aFRR (can improve the optimisation case)\n", "* Simple payback time (relevant for ENCORE, because its the main metric)\n", "* APX inkoop toevoegen (baseload inkopen, bijv. 30%)\n", "* Add explanations/conclusions to analysis/graph --> Create report-like output\n", "* Graphs\n", " * EBITDA vs. baseline (earnings vs baseline)\n", "* Show COP curves in different cases, just for illustration\n", "* Energy report --> Check + add gas\n", "* Fix comparison reports\n", "* Model verification" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Meeting Notes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Meeting 25-11-2020" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* aFRR can help optimisation case\n", "* SDE++ should be included\n", "* Tsource sensitivity really gives interesting insights\n", "* Sensitivities should be verified (especially CO2, Tsink, Tsource, time period)\n", "* AP TNO: Update/verify COP curve\n", "* AP TNO: Update CAPEX\n", "* AP Mark: \n", " * Create graphs on COP curve with different Tsource, Tsink\n", " * Generate table and output in .csv (send it to Andrew)\n", "* Investigate opportunity to lower the COP and negative electricity prices\n", " * Technically feasible, but not really needed/possible to do it in this project\n", "* Could be interesting to run this model on a usecase with higher delta T\n", "* Conclusion: Finalize this model, but not add too much extra complexity, next steps is to go towards industrial partners with the results" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# ENCORE : Heatpump Optimisation Framework\n", "\n", "***\n", "© Mark Kremer \n", "July 2020\n", "##### Cases\n", "In this model, 3 cases are compared:\n", "* **Baseline** : All heat is supplied by steam turbine\n", "* **Heatpump case** : All heat is supplied by heatpump\n", "* **Hybrid case** : Steam turbine and heatpump run in hybrid mode, and are optimised on costs in real-time" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Loading config" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class Config():\n", " start = '2019-01-01'\n", " end = '2019-12-31'\n", " \n", " hp_vdg_e_power = 23.3 # MW\n", " hp_ndg_e_power = 7.7 # MW\n", " hp_min_load = 0.3\n", " hp_lifetime = 25\n", " hp_capex = 200_000 # EUR/MWth\n", " hp_opex = 0.01 # in % of CAPEX\n", " hp_devex = 0.005 # in % of CAPEX\n", " \n", " gb_power = 35 # MW\n", " gb_efficiency = 0.9\n", " \n", " tax_bracket_g = 4 \n", " tax_bracket_e = 4\n", " \n", " include_transport_costs = False\n", " grid_operator = 'Liander'\n", " connection_type = 'TS/MS'\n", " \n", " discount_rate = 0.1\n", " project_duration = 15\n", "\n", " forecast = 'ForeNeg'\n", " gas_price_multiplier = 1\n", " e_price_multiplier = 1\n", " e_price_volatility_multiplier = 1\n", " co2_price_multiplier = 1\n", " tsource_delta = 0\n", " energy_tax_multiplier = 1\n", " \n", "c = Config()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "class Store():\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model set-up" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def load_demand_data(c, s):\n", " demand = pd.read_csv('data/smurfit_demand_preprocessed.csv', delimiter=';', decimal=',')\n", " dt_index = pd.date_range(\n", " start=s.time_fw.start,\n", " end=s.time_fw.start + timedelta(days=365), freq='1T',\n", " closed='left',\n", " tz='Europe/Amsterdam')\n", " demand.index = dt_index\n", " demand['Total demand'] = demand['MW (VDG)'] + demand['MW (NDG)']\n", " demand = demand[c.start:c.end]\n", " return demand" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def setup_model(c):\n", " s = Store()\n", " s.time_fw = TimeFramework(start=c.start, end=c.end)\n", "\n", " s.baseline = CaseStudy(time_fw=s.time_fw, freq='1T', name='Baseline')\n", " s.hpcase = CaseStudy(time_fw=s.time_fw, freq='1T', name='Heatpump only', forecast='mipf')\n", " s.optcase1 = CaseStudy(time_fw=s.time_fw, freq='1T', name='Optimisation', forecast='mipf')\n", " s.optcase2 = CaseStudy(time_fw=s.time_fw, freq='1T', name='Optimisation 2', forecast='mipf')\n", " \n", " s.cases = list(CaseStudy.get_instances().values())\n", " s.optcases = [s.hpcase, s.optcase1, s.optcase2]\n", " \n", " s.demand = load_demand_data(c, s)\n", " return s\n", "\n", "s = setup_model(c)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in data" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def increase_volatility_by_factor(col, factor):\n", " mean = col.mean()\n", " diff_to_mean = col - mean\n", " new_diff = diff_to_mean * factor\n", " return mean + new_diff\n", "\n", "def increase_by_factor(col, factor):\n", " mean = col.mean()\n", " diff_to_mean = col - mean\n", " \n", " cond = diff_to_mean > 0\n", " diff_to_mean[cond] *= factor\n", " diff_to_mean[~cond] /= factor\n", " return mean + diff_to_mean" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def load_data(c, s):\n", " for case in [s.baseline, s.optcase1, s.optcase2]:\n", " case.add_gasprices()\n", " case.add_co2prices(perMWh=True)\n", " \n", " case.data['Gas prices (€/MWh)'] = increase_by_factor(case.data['Gas prices (€/MWh)'], c.gas_price_multiplier)\n", " case.data['CO2 prices (€/MWh)'] = increase_by_factor(case.data['CO2 prices (€/MWh)'], c.co2_price_multiplier)\n", " \n", " for case in s.optcases:\n", " case.data['NEG'] = increase_by_factor(case.data['NEG'], c.e_price_multiplier)\n", " case.data['ForeNeg'] = increase_by_factor(case.data['ForeNeg'], c.e_price_multiplier)\n", " case.data['DAM'] = increase_by_factor(case.data['DAM'], c.e_price_multiplier)\n", " \n", " case.data['NEG'] = increase_volatility_by_factor(case.data['NEG'], c.e_price_volatility_multiplier)\n", " case.data['ForeNeg'] = increase_volatility_by_factor(case.data['ForeNeg'], c.e_price_volatility_multiplier)\n", " \n", " s.demand[['Tsource (VDG)', 'Tsource (NDG)']] += c.tsource_delta\n", " for case in s.cases:\n", " case.data = pd.concat([case.data, s.demand], axis=1) \n", "\n", " s.eb_ode_g = get_tax_rate('gas', 2020, 4)['EB+ODE'] * c.energy_tax_multiplier\n", " s.eb_ode_e = get_tax_rate('electricity', 2020, 4)['EB+ODE'] * c.energy_tax_multiplier\n", " s.grid_fees = get_grid_tariffs_electricity(c.grid_operator, 2020, c.connection_type)\n", " s.grid_fee_per_MWh = s.grid_fees['kWh tarief'] * 1000\n", " return s\n", "\n", "s = load_data(c, s)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Assets" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### COP curve" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def cop_curve(Tsink, Tsource):\n", " Tsink += 273\n", " Tsource += 273\n", "\n", " c1 = 0.267 * Tsink / (Tsink - Tsource)\n", " c2 = 0.333 * Tsink / (Tsink - Tsource)\n", " \n", " return Polynomial([c2, c1])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "heatpump = Heatpump(\n", " name='Heatpump',\n", " max_th_power=1,\n", " min_th_power=0,\n", " cop_curve=cop_curve\n", ")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "import itertools\n", "\n", "source_Ts = np.arange(25, 75)\n", "sink_Ts = np.arange(80, 170)\n", "\n", "df = pd.DataFrame(columns=list(sink_Ts), index=list(source_Ts))\n", "for sourceT, sinkT in itertools.product(source_Ts, sink_Ts):\n", " df.loc[sourceT, sinkT] = heatpump.get_cop(heat_output=0.5, Tsink=sinkT, Tsource=sourceT)\n", " \n", "#df.to_csv('cops_at_50perc_load.csv', sep=';', decimal=',')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "linkText": "Export to plot.ly", "plotlyServerURL": "https://plot.ly", "showLink": true }, "data": [ { "line": { "color": "rgba(70, 165, 121, 1.0)", "dash": "solid", "shape": "linear", "width": 1.3 }, "mode": "lines", "name": "None", "text": "", "type": "scatter", "x": [ 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99 ], "y": [ 1.786090909090909, 1.800411818181818, 1.8147327272727272, 1.8290536363636363, 1.8433745454545454, 1.8576954545454545, 1.8720163636363636, 1.8863372727272727, 1.9006581818181816, 1.9149790909090907, 1.9292999999999998, 1.943620909090909, 1.957941818181818, 1.9722627272727271, 1.9865836363636362, 2.0009045454545453, 2.015225454545454, 2.0295463636363635, 2.0438672727272724, 2.0581881818181818, 2.0725090909090906, 2.08683, 2.101150909090909, 2.115471818181818, 2.129792727272727, 2.1441136363636364, 2.1584345454545453, 2.1727554545454546, 2.1870763636363635, 2.2013972727272724, 2.2157181818181817, 2.2300390909090906, 2.24436, 2.258680909090909, 2.273001818181818, 2.287322727272727, 2.3016436363636363, 2.315964545454545, 2.3302854545454545, 2.3446063636363634, 2.3589272727272728, 2.3732481818181816, 2.387569090909091, 2.40189, 2.4162109090909087, 2.430531818181818, 2.4448527272727274, 2.4591736363636363, 2.473494545454545, 2.4878154545454545, 2.5021363636363634, 2.5164572727272727, 2.5307781818181816, 2.545099090909091, 2.55942, 2.573740909090909, 2.588061818181818, 2.6023827272727273, 2.6167036363636362, 2.631024545454545, 2.6453454545454544, 2.6596663636363633, 2.6739872727272727, 2.6883081818181815, 2.702629090909091, 2.7169499999999998, 2.731270909090909, 2.745591818181818, 2.7599127272727273, 2.774233636363636, 2.7885545454545455, 2.8028754545454544, 2.8171963636363637, 2.8315172727272726, 2.8458381818181815, 2.860159090909091, 2.87448, 2.888800909090909, 2.903121818181818, 2.9174427272727272, 2.9317636363636366, 2.9460845454545455, 2.9604054545454543, 2.9747263636363637, 2.9890472727272726, 3.003368181818182, 3.0176890909090908, 3.0320099999999996, 3.046330909090909, 3.0606518181818183, 3.074972727272727, 3.089293636363636, 3.1036145454545454, 3.1179354545454547, 3.1322563636363636, 3.1465772727272725, 3.1608981818181814, 3.1752190909090907, 3.18954, 3.203860909090909 ] } ], "layout": { "autosize": true, "legend": { "bgcolor": "#F5F6F9", "font": { "color": "#4D5663" } }, "paper_bgcolor": "#F5F6F9", "plot_bgcolor": "#F5F6F9", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "color": "#4D5663" }, "text": "Heatpump COP curve" }, "xaxis": { "autorange": true, "gridcolor": "#E1E5ED", "range": [ 0, 0.99 ], "showgrid": true, "tickfont": { "color": "#4D5663" }, "title": { "font": { "color": "#4D5663" }, "text": "Thermal load in %" }, "type": "linear", "zerolinecolor": "#E1E5ED" }, "yaxis": { "autorange": true, "gridcolor": "#E1E5ED", "range": [ 1.707325909090909, 3.282625909090909 ], "showgrid": true, "tickfont": { "color": "#4D5663" }, "title": { "font": { "color": "#4D5663" }, "text": "COP" }, "type": "linear", "zerolinecolor": "#E1E5ED" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABR4AAAHCCAYAAACJ7NUAAAAgAElEQVR4nOzd61NUd9/v+f3XJUaLsjJOMk4qt1OWuVOp8jJ757bKMSgqDpuMm1FjVIYy2agbOSMBFJFwiJwERAEFEZFTEIIgCNI0uh995sE1tlwG42G1NHzW+8HrgdLSv16NX7rftdav/1N06X8KAAAAAAAAAOLpPyV6AQAAAAAAAAD8EB4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER4BAAAAAAAAxB3hEQAAAAAAAEDcER6X+bd//w/927//x2u/nvT5DqX9t5MfdA2rcR9rWdLnO/7idcejpfXWirdf6ball6pXvO1/3pOa8McMAAAAAADgiPC4DOExcdL+28kVH/vg8MMVg+J/3pOqpM93qPRS9b/8fdZ/z13x+7wIj6/e/u9iJQAAAAAAAN4f4XEZwmNivC4KLrf8zMQXcfF1t1/p66+7jxdnTYbtmAMAAAAAAHxohMdl3jc8vjhb7+8u3/23f/+Pv1zm++p9rXQp8IvbvAhkpZeq/3J/rzvrb3D44b/8/Yv41tJ6K/Z3/3lPqv7t3//jL5ctv3gMr16i/Orjf5d1ve9xf5/bv/o8/F3cfJdLrl99jMu/5/sc91ef93O5F1+7zhfHOuu/5/7tz9arXwcAAAAAAEgEwuMy7xMeX0SfN32fF3HvTbd7XdxcHgaXR6kXsWv5937XAPZqeFt+efNKf788bL3Lulby4nu+7RmHK61hJS8C4auPPUh4XOn5ehFc3/e4r3SZ97/9+3+suJ60/3byX+7/xbFY6TniDE4AAAAAAJBohMdlVjor8e8+6OR1oelF/HnTGX8vgtTyf/+m8LjS93w1VL3vmXd/9z1f9/fvsq6VvO4svqC3fxEeXxyD14XHt7nM+++O6dvc5l2O+/Lv82q0ffVxv+57rPRzBQAAAAAAsNoIj8u86xmPfxePVopjL4LSq5YHpvcJj6+e3RePAPa2f/8u61pJIsPji0D8Npd5/91zHc/j/rqfg5W+95t+Vt50tikAAAAAAMCHRHhc5l3D45vOkHxx2+WXLi8PRysFqbCGx9W61PpVbxs83+bszXiGx1fX/2///h//coyW/0y9ztvusQkAAAAAAPAhEB6XeZ8zHt9mb8B3CVLvEx5fjVhrJTy+zVmCb3Pc3+f2r+59+LaXVL/Oap/xuPy4vu4MxncJpwAAAAAAAKuN8LjMu4bHt9n3L7r0+jP/VgpSr57Z9sLfBb63Xddqh8e3PZPxxXr/LqKt9PheFxFX+nrQ8Ph3z/WLdcczPC6/zasfKvMu3wMAAAAAACBRCI/LxOtTraNL/wxlLyLXStFr+aW/y4PU6yLl6/Y2fPHpyMv/bqXLkV93f/EKj2+zrr/z4nG/enyXX1K80u1fvd/X/X3Q8Pji+V/p08pfvaQ+yHFfac2vW/dKn2q9fF18uAwAAAAAAEgkwuMy7xMeo0svY9erlt/m1T0GX4TJlS6hXb535Iv1vAh8r+4r+br1vrj9m+4vXuHxbdf1d163b+HrzoR83e1Xum08wuOLx7/8vl6NfkGP+0o/c28KuCvtNfo2WwAAAAAAAAB8SITHdeLvLmlmXQAAAAAAAFhrCI/rxFoNfGt1XQAAAAAAAEgswuM6sVYD31pdFwAAAAAAABKL8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAAAAAAAAAOKO8AgAAAAAAAAg7giPAfwxMas/JmYTvg7Ex5P5qB49fprwdSA+FhaeafzRXMLXgfhh3noZn3yihcVnCV8H4mNyel5z80sJXwfiY3p2QTNPFhO+DsTHk7lFPZpZSPg6EB9PI0uaeDSf8HUgPhajzzX255OErwP4kAiPARAevRAevRAe/TBvvRAevRAevRAevRAevRAevRAeEQaExwAIj14Ij14Ij36Yt14Ij14Ij14Ij14Ij14Ij14IjwgDwmMAhEcvhEcvhEc/zFsvhEcvhEcvhEcvhEcvhEcvhEeEAeExAMKjF8KjF8KjH+atF8KjF8KjF8KjF8KjF8KjF8IjwoDwGADh0Qvh0Qvh0Q/z1gvh0Qvh0Qvh0Qvh0Qvh0QvhEWFAeAyA8OiF8OiF8OiHeeuF8OiF8OiF8OiF8OiF8OiF8IgwIDwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0Qnj0Qnj0Qnj0QnhEGBAeAyA8eiE8eiE8+mHeeiE8eiE8eiE8eiE8eiE8eiE8IgwIjwEQHr0QHr0QHv0wb70QHr0QHr0QHr0QHr0QHr0QHhEGhMcACI9eCI9eCI9+mLdeCI9eCI9eCI9eCI9eCI9eCI8IA8JjAIRHL4RHL4RHP8xbL4RHL4RHL4RHL4RHL4RHL4RHhAHhMQDCoxfCoxfCox/mrRfCoxfCoxfCoxfCoxfCoxfC49o3MD2R8DWsd4THAAiPXgiPXgiPfpi3XgiPXgiPXgiPXgiPXgiPXgiPa8vozLRqHnQqs/2y/kt1lpIKDuij3O8Tvq71jvAYAOHRC+HRC+HRD/PWC+HRC+HRC+HRC+HRC+HRC+ExcWYiC2oZ7dO5rhrtqzun/7X4/9JHud/ro9zvtSk/RbuqTutEW5mqB24lfK3rHeExAMKjF8KjF8KjH+atF8KjF8KjF8KjF8KjF8KjF8Lj6phfXFL3xLBKepuV3piv7eVHY5Hxo9zvtb38qNIb81XS26zuiWEtRHmNGk+ExwAIj14Ij14Ij36Yt14Ij14Ij14Ij14Ij14Ij14Ijx/gmC4918D0hCrvd+h4a6l2Xjmljfn7Y5Fx68V0pdSfV053ndrG+jUTYT5+aITHAAiPXgiPXgiPfpi3XgiPXgiPXgiPXgiPXgiPXgiPwY3Pzap+6LayOiq1u/qMNhceikXGzYWHtLv6jLI6KlU/dFvjc7yfSATCYwCERy+ERy+ERz/MWy+ERy+ERy+ERy+ERy+ERy+Ex3czuxBR21i/crrrlFJ/Xlsvpsci48b8/dp55ZSOt5aq8n6HBqYntLj0POFrBuExEMKjF8KjF8KjH+atF8KjF8KjF8KjF8KjF8KjF8Lj6y1En6lnclSlfdd1pKlQOyqO6ePc5Fho3FaeobSGPBX1NKpzfEjzi7wOWasIjwEQHr0QHr0QHv0wb70QHr0QHr0QHr0QHr0QHr0QHl8amp5U1cBNnWgr066q09qUnxKLjJ+VpCm57qzOddWoZbRPjxd4376eEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITx6ITx6ITx6CWt4nHo6p4bhHv18s0p7an7Rp0WpsciYVHhQ31VnKbP9smoHu/TH7OOErxfBEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITx6ITx6ITx6CUN4fBJZ1K2Hgyq4c02p1y7oy1+PxCLjhrxkfX3pR2U0F6vsXqvuPhpTJMq+jG4IjwEQHr0QHr0QHv0wb70QHr0QHr0QHr0QHr0QHr24hcdI9JnuPhpT2b1WZTQX6+tLP2pD3st9Gb/89YhSr11QwZ1ruvVwUE8i/K4JA8JjAIRHL4RHL4RHP8xbL4RHL4RHL4RHL4RHL4RHL+s9PI7MTOm3B5062V6hb69mKqngQCwybik+rL212crurFbTSK+mnvLeLKwIjwEQHr0QHr0QHv0wb70QHr0QHr0QHr0QHr0QHr2sp/D4eOGpmkZ6ld1Zrb212dpSfPjlvowFB/Tt1UydbK/Qbw86NTIzlfD1Yu0gPAZAePRCePRCePTDvPVCePRCePRCePRCePRCePSyVsPj/GJUneNDKuppVFpDnraVZ8Qi48e5ydpRcUxHmgpV2nddPZOjikR5TYfXIzwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0Qnj0Qnj0Qnj0shbCYyT6XP1T46rob9fRlhJ9c/knfZK3LxYavyj9QQd/z1HunXrdGBvQ7EIk4ccN6wvhMQDCoxfCoxfCox/mrRfCoxfCoxfCoxfCoxfCo5dEhMfxuVnVDnYps/2yvqvOUlLhwVhk/LQoVXtqftHPN6vUMNyjyXneTyE4wmMAhEcvhEcvhEc/zFsvhEcvhEcvhEcvhEcvhEcvHzo8zkQW1DbWr5zuOqXUn9fWi+mxyLgxf792Xjml462lqrzfoYHpiYQfD3giPAZAePRCePRCePTDvPVCePRCePRCePRCePRCePQSz/A4v7ik7olhlfQ2K70xX9vLj8Yi40e532t7+VGlN+arpLdZ3RPDml/k9zZWB+ExAMKjF8KjF8KjH+atF8KjF8KjF8KjF8KjF8Kjl/cNj4tLzzUwPaHK+x063lqqnVdOaWP+/lhk3HoxXSn155XTXae2sX7NRJgBSBzCYwCERy+ERy+ERz/MWy+ERy+ERy+ERy+ERy+ERy9vGx4n5+dUP3RbWR2V2l19RpsLD8Ui4+bCQ9pdfUZZHZWqH7qt8TleM2NtITwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0Qnj0Qnj0Qnj0slJ4nF2I6MbYgHLv1Ovg7zn6ovSHWGT8JG+fvrn8k462lKiiv139U+NaXHqe8McB/B3CYwCERy+ERy+ERz/MWy+ERy+ERy+ERy+ERy+ERy9PF5fUPHBPpX3XdaSpUDsqjunj3ORYaNxWnqG0hjwV9TSqc3xI84vRhK8ZeFeExwAIj14Ij14Ij36Yt14Ij14Ij14Ij14Ij14Ij+vb0PSkqgZu6kRbmXZVndam/JRYZPysJE3JdWd1rqtGLaN9erzAe1N4IDwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0Qnj0Qnj0QnhcP6aezqlppFfZndXaW5utLcWHY5ExqeCAvr2aqZNt5bp4u1UjM1MJXy/woRAeAyA8eiE8eiE8+mHeeiE8eiE8eiE8eiE8eiE8rk1PIou69XBQBXeuKfXaBX3565FYZNyQl6yvL/2ojOZild1r1d1HY4pE//ka6H0/1RpYTwiPARAevRAevRAe/TBvvRAevRAevRAevRAevRAeEy8Sfaa7j8ZUdq9VGc3F+vrSj9qQ93Jfxi9/PaLUaxdUcOeabj0c1JPI6+cp4RFhQHgMgPDohfDohfDoh3nrhfDohfDohfDohfDohfC4+kZmpvTbg06dbK/Qt1czlVRwIBYZtxQf1t7abGV3VqtppFdTT9/t/QfhEWFAeAyA8OiF8OiF8OiHeeuF8OiF8OiF8OiF8OiF8PhhPV54qpbRPp3rqlFy3Vl9VpIWi4yb8lO0q+q0TrSVqWrgpoamJwPfH+ERYUB4DIDw6IXw6IXw6Id564Xw6IXw6IXw6IXw6IXwGD/zi1F1jg+pqKdRaQ152laeEYuMH+cma0fFMR1pKlRp33X1TI5qIRr/1y2ER4QB4TEAwqMXwqMXwqMf5q0XwqMXwqMXwqMXwqMXwuP7WVx6rv6pcVX0t+toS4m+ufyTPsnbFwuNX5T+oIO/5yj3Tr1ujA1odiGyOusiPCIECI8BEB69EB69EB79MG+9EB69EB69EB69EB69EB7fzvjcrOqHbiuro1K7q89oc+GhWGTcXHhIu6vPKKujUvVDtzU5n7j3DIRHhAHh8Q0uFJQp6fMdMcmpGbGvER69EB69EB79MG+9EB69EB69EB69EB69EB7/aiayoLaxfuV01yml/ry2XkyPRcaN+fu188opHW8tVeX9Dg1MT2hx6XnC1/wC4RFhQHh8g+Wh8cWfj2dmK7pEeHRDePRCePTDvPVCePRCePRCePRCePQS9vA4v7ik7olhlfQ2K70xX9vLj8Yi40e532t7+VGlN+arpLdZ3RPDml9c27+bCI8IA8LjO7pQUBaLkYRHL4RHL4RHP8xbL4RHL4RHL4RHL4RHL2ELjwPTE6q836HjraXaeeWUNubvj0XGrRfTlVJ/XjnddWob69dMZP39nBMeEQaEx3f01T/2rnDG43MYeBkeE78WBLew8EwTj+YSvo4P53+ugTWsrrE/mbdOJmLhMfFrQXAvw2Pi14LgXobHxK8Fwb0Mj4lfSzDhe+2zkqeRJf35aD7h6/gQJuefqGH4jn6+eUV7an7Rp0Uv92VMKjyo76qzlNl+SbWDXRqfm0n4euNhMfpMDyefJHwdeJPEt6j1jPD4lr76x97X7vH4x8QTWOD59DKrUePnc/LxQsLXsNpGx32fzzAaZeaa4fn0wvPpxeP5DONrn9c9nw6vcQfGplTTd1tn2q7q++qz+t9KXu7LuCF3n74qP660+gLl3WpU68ADjRi/DuQ17tqX6B613hEe39HxzGwutTbFpdZeuNTaD/PWC5dae+FSay9cau2FS629rMdLrSPRZ+qZHFVp33UdaSrUjopj+jg3ORYat5VnKK0hT0U9jeocH9L8YjTha14tXGqNMCA8vqNb3XeV9PkORZcIj24Ij14Ij36Yt14Ij14Ij14Ij14Ij17WQ3gcmZnSbw86dbK9Qt9ezVRSwYFYZNxSfFh7a7OV3VmtppFePV4I9/svwiPCgPD4Bl/9Y++//Dk5NYMzHk0RHr0QHv0wb70QHr0QHr0QHr0QHr2stfA49XROTSO9yu6s1t7abG0pPvxyX8aCA/r2aqZOtlfotwedGpmZSvh61xrCI8KA8PgGyakZSvp8R8xKezwmeo2ID8KjF8KjH+atF8KjF8KjF8KjF8Kjl0SGxyeRRd16OKiCO9eUeu2Cvvz1yMt9GfOS9fWlH5XRXKyye626+2hMkSi/59+E8IgwIDwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0Qnj0Qnj0slrhMRJ9rruPxlR2r1UZzcX6+tKP2pD3cl/GL389otRrF1Rw55puPRzUkwgz430QHhEGhMcACI9eCI9eCI9+mLdeCI9eCI9eCI9eCI9ePlR4/GP2sWoHu5TZflnfVWcpqfBgLDJ+WpSqPTW/6OebVWoY7tHUU15jxwvhEWFAeAyA8OiF8OiF8OiHeeuF8OiF8OiF8OiF8OglHuHx8cJTtYz26VxXjZLrzuqzkrRYZNyUn6JdVad1oq1MVQM3NTQ9mfDH7IzwiDAgPAZAePRCePRCePTDvPVCePRCePRCePRCePTyruFxfnFJneNDKuppVFpDnraVZ8Qi48e5ydpRcUxHmgpV2nddPZOjWmBfxlVFeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITx6ITx6+bvwuLj0XAPTE6q836HjraXaeeWUNubvj4XGrRfTlVJ/XjnddWob69fsQiThjyfsCI8IA8JjAIRHL4RHL4RHP8xbL4RHL4RHL4RHL4RHL8vD4/jcrOqHbiuro1K7q89oc+GhWGTcXHhIu6vPKKujUvVDtzU+x+uotYjwiDAgPAZAePRCePRCePTDvPVCePRCePRCePRCePQwE1lQ21i/znfW6v+sztbWi+mxyLgxf792Xjml462lqrzfoYHpCS0uPU/4mvFmhEeEAeExAMKjF8KjF8KjH+atF8KjF8KjF8KjF8Lj+rMQfabuiWGV9DYrvTFf28uPxiLjR7nf6//49f9RemO+Snqb1T0xrPlF5u96RXhEGBAeAyA8eiE8eiE8+mHeeiE8eiE8eiE8eiE8rn1D05OqGripE21l2lV1WpvyU2KR8bOSNCXXndW5rhq1jPbp0fx84E+1xtpBeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITx6ITyuLZPzc2oY7tHPN6u0p+YXfVqUGouMSYUH9V11ljLbL6t2sEt/zD7+y79/10+1xtpGeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITx6ITwm8NhHFnVjbEC5d+p18PccfVH6QywyfpK3T99c/klHW0pU0d+u/qlxRaJv3peR8OiF8IgwIDwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0Qnj0QnhcHZHoM919NKaye63KaC7W15d+1Ia85Fho/PLXI0q9dkEFd67p1sNBzS9G3+t+CI9eCI8IA8JjAIRHL4RHL4RHP8xbL4RHL4RHL4RHL4THD2NkZkq/PejUyfYKfXs1U0kFB2KRcUvxYe2tzVZ2Z7WaRno19TR+r0kJj14IjwgDwmMAhEcvhEcvhEc/zFsvhEcvhEcvhEcvhMfgHi88VdNIr7I7q7W3Nltbig+/3Jex4IC+vZqpk+0V+u1Bp0Zmpj7oWgiPXgiPCAPCYwCERy+ERy+ERz/MWy+ERy+ERy+ERy+Ex3czvxhV5/iQinoaldaQp23lGbHIuCEvWV9f+lEZzcUqu9equ4/GFImu7u8ywqMXwiPCgPAYAOHRC+HRC+HRD/PWC+HRC+HRC+HRC+Hx9SLR5+qfGldFf7uOtpTom8s/6ZO8fbHQ+EXpDzr4e45y79TrxtiAnkQS//+C8OiF8IgwIDwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0Qnj0Qnh86Y/Zx6od7FJm+2V9V52lpMKDscj4aVGq9tT8op9vVqlhuEeT82vzdSTh0QvhEWFAeAyA8OiF8OiF8OiHeeuF8OiF8OiF8OglrOFxJrKgltE+neuqUXLdWX1WkhaLjJvyU7Sr6rROtJWpauCmhqYnE77et0V49EJ4RBgQHgMgPHohPHohPPph3nohPHohPHohPHoJQ3icX1xS98SwSnqbld6Yr+3lR2OR8aPc77W9/KjSG/NV0tus7olhLazyvozxRHj0QnhEGBAeAyA8eiE8eiE8+mHeeiE8eiE8eiE8enELj4tLzzUwPaHK+x063lqqnVdOaWP+/lhk3HoxXSn155XTXae2sX7NRHwee3SJ8OiG8IgwIDwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0Qnj0st7D4+T8nOqHbiuro1K7q89oc+GhWGTcXHhIu6vPKKujUvVDtzU+5/9agfDohfCIMCA8BkB49EJ49EJ49MO89UJ49EJ49EJ49LKewuPsQkQ3xgaUe6deB3/P0RelP8Qi4yd5+/TN5Z90tKVEFf3t6p8a1+LS84SvebURHr0QHhEGhMcACI9eCI9eCI9+mLdeCI9eCI9eCI9e1mp4XIg+U8/kqEr7rutIU6F2VBzTx7nJsdC4rTxDaQ15KuppVOf4kOYXowlf81pAePRCeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITx6WSvhcWh6UlUDN3WirUy7qk5rU35KLDJ+VpKm5LqzOtdVo5bRPj1e4DX56xAevRAeEQaExwAIj14Ij14Ij36Yt14Ij14Ij14Ij14SER6nns6pYbhHP9+s0p6aX/RpUWosMiYVHtR31VnKbL+s2sEu/TH7OOHHaD0hPHohPCIMCI8BEB69EB69EB79MG+9EB69EB69EB69fOjw+CSyqFsPB1Vw55pSr13Ql78eiUXGDXnJ+vrSj8poLlbZvVbdfTSmSDR8+zLGE+HRC+ERYUB4DIDw6IXw6IXw6Id564Xw6IXw6IXw6CWe4TESfaa7j8ZUdq9VGc3F+vrSj9qQ93Jfxi9/PaLUaxdUcOeabj0c1JMIP0fxRnj0QnhEGBAeAyA8eiE8eiE8+mHeeiE8eiE8eiE8egkSHkdmpvTbg06dbK/Qt1czlVRwIBYZtxQf1t7abGV3VqtppFdTT3ndtRoIj14IjwgDwmMAhEcvhEcvhEc/zFsvhEcvhEcvhEcvbxseHy88Vcton8511Si57qw+K0mLRcZN+SnaVXVaJ9rKVDVwU0PTkwl/XGFFePRCeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITx6WSk8zi9G1Tk+pKKeRqU15GlbeUYsMn6cm6wdFcd0pKlQpX3X1TM5qoUo83qtIDx6ITwiDAiPARAevRAevRAe/TBvvRAevRAevRAevcw8iejW6LAq+tt1tKVE31z+SZ/k7YuFxi9Kf9DB33OUe6deN8YGNLsQSfia8XqERy+ER4QB4TEAwqMXwqMXwqMf5q0XwqMXwqMXwuP6Nj43q9rBLmW2X9Z31Vn/si/jp0Wp2lPzi36+WaWG4R5NzvNaab0hPHohPCIMCI8BEB69EE2ppVkAACAASURBVB69EB79MG+9EB69EB69EB7Xj5nIgtrG+pXTXaeU+vPaejE9Fhk35u/Xziun9P80l+jinesamJ5I+HoRHOHRC+ERYUB4DIDw6IXw6IXw6Id564Xw6IXw6IXwuDbNLy6pe2JYJb3NSm/M1/byo7HI+FHu99peflTpjfkq6W1W98Sw5hf/+X8yyKdaY+0hPHohPCIMCI8BEB69EB69EB79MG+9EB69EB69EB7XhoHpCVXe79Dx1lLtvHJKG/P3xyLj1ovpSqk/r5zuOrWN9Wsm8vqwSHj0Qnj0QnhEGBAeAyA8eiE8eiE8+mHeeiE8eiE8eiE8rr7J+Tk1DPfo55tV2lPziz4tSo1FxqTCg/quOkuZ7ZdVO9il8bl3+31IePRCePRCeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITx+WLMLEd0YG1DunXod/D1HX5T+EIuMn+Tt0zeXf9LRlhJV9Lerf2pckejzQPdHePRCePRCeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITx6ITzGz0L0mXomR1Xad11Hmgq1o+KYPs5NjoXGbeUZSmvIU1FPozrHhzS/GI37GgiPXgiPXgiPCAPCYwCERy+ERy+ERz/MWy+ERy+ERy+Ex/c3ND2pqoGbOtFWpl1Vp7UpPyUWGT8rSVNy3Vmd66pRy2ifHi+szutOwqMXwqMXwiPCgPAYAOHRC+HRC+HRD/PWC+HRC+HRC+Hx7Uw9nVPTSK+yO6u1tzZbW4oPv9yXseCAvr2aqZPtFfrtQadGZqYStk7CoxfCoxfCI8KA8BgA4dEL4dEL4dEP89YL4dEL4dEL4fGvnkQWdevhoAruXFPqtQv68tcjsci4IS9ZX1/6URnNxSq716q7j8YUia6d+UZ49EJ49EJ4RBgQHgMgPHohPHohPPph3nohPHohPHoJe3iMRJ/r7qMxld1rVUZzsb6+9KM25L3cl/HLX48o9doFFdy5plsPB/UksraPFeHRC+HRC+ERYUB4DIDw6IXw6IXw6Id564Xw6IXw6CVs4fGP2ceqHexSZvtlfVedpaTCg7HI+GlRqvbU/KKfb1apYbhHU0/X32sLwqMXwqMXwiPCgPAYAOHRC+HRC+HRD/PWC+HRC+HRi3N4fLzwVC2jfTrXVaPkurP6rCQtFhk35adoV9VpnWgrU9XATQ1NTyZ8vfFAePRCePRCeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITx6cQmP84tRdY4PqainUWkNedpWnhGLjB/nJmtHxTEdaSpUad919UyOamEN7csYT4RHL4RHL4RHhAHhMQDCoxfCoxfCox/mrRfCoxfCo5f1GB4Xl56rf2pcFf3tOtpSom8u/6RP8vbFQuMXpT/o4O85yr1TrxtjA5pdiCR8zauF8OiF8OiF8IgwIDwGQHj0Qnj0Qnj0w7z1Qnj0Qnj0sh7C4/jcrOqHbiuro1K7q89oc+GhWGTcXHhIu6vPKKujUvVDtzU5H+7XA4RHL4RHL4RHhAHhMQDCoxfCoxfCox/mrRfCoxfCo5e1Fh5nIgtqG+tXTnedUurPa+vF9Fhk3Ji/XzuvnNLx1lJV3u/QwPSEFpeeJ3zNawnh0Qvh0QvhEWFAeAyA8OiF8OiF8OiHeeuF8OiF8OglkeFxIfpM3RPDKultVnpjvraXH41Fxo9yv9f28qNKb8xXSW+zuieGNb/Iz92bEB69EB69EB4RBoTHAAiPXgiPXgiPfpi3XgiPXgiPXlYzPA5NT6pq4KZOtJVpV9VpbcpPiUXGz0rSlFx3Vue6atQy2qeZCPHsfRAevRAevRAeEQaExwAIj14Ij14Ij36Yt14Ij14Ij14+VHicnJ9Tw3CPfr5ZpT01v+jTotRYZEwqPKjvqrOU2X5ZtYNd+mP2ccKPgwvCoxfCoxfCI8KA8BgA4dEL4dEL4dEP89YL4dEL4dFLPMLj7EJEN8YGlHunXgd/z9EXpT/EIuMnefv0zeWfdLSlRBX97eqfGlckyr6MHwrh0Qvh0QvhEWFAeAyA8OiF8OiF8OiHeeuF8OiF8OjlXcNjJPpMPZOjKu27riNNhdpRcUwf5ybHQuO28gylNeSpqKdRneNDml+MJvwxhgnh0Qvh0QvhEWFAeAyA8OiF8OiF8OiHeeuF8OiF8OjlTeFxZGZKvz3o1Mn2Cn17NVNJBQdikXFL8WHtrc1Wdme1mkZ69XiB11aJRnj0Qnj0QnhEGBAeAyA8eiE8eiE8+mHeeiE8eiE8elkeHqeezqlppFfZndXaW5utLcWHX+7LWHBA317N1Mn2Cv32oFMjM1MJXzv+ivDohfDohfCIMCA8BkB49EJ49EJ49MO89UJ49EJ49DC/GNWth4P6H7dqdaDuf+jLX4/EIuOGvGR9felHZTQXq+xeq+4+GlMkyv/h9YDw6IXw6IXwiDAgPAZAePRCePRCePTDvPVCePRCeFx/ItHn6p8aV0V/u462lOibyz/pk7x9sdD4v1/8QQd/z1HunXrdGBvQk0j8P+Uaq4Pw6IXw6IXwiDAgPAZAePRCePRCePTDvPVCePRCeFz7/ph9rNrBLmW2X9Z31VlKKjwYi4yfFqVqT80v+vlmlRqGezT06FHgT7XG2kF49EJ49EJ4RBgQHgMgPHohPHohPPph3nohPHohPK4tjxeeqmW0T+e6apRcd1aflaTFIuOm/BTtqjqtE21lqhq4qaHpyb/8+3f9VGusbYRHL4RHL4RHhAHhMQDCoxfCoxfCox/mrRfCoxfCY+LMLy6pc3xIRT2NSmvI07byjFhk/Dg3WTsqjulIU6FK+66rZ3JUC2+xLyPh0Qvh0Qvh0QvhEWFAeAyA8OiF8OiF8OiHeeuF8OiF8Lg6Fpeea2B6QpX3O3S8tVQ7r5zSxvz9sdC49WK6UurPK6e7Tm1j/ZpdiLzX/RAevRAevRAevRAeEQaExwAIj14Ij14Ij36Yt14Ij14Ijx/G+Nys6oduK6ujUrurz2hz4aFYZNxceEi7q88oq6NS9UO3NT4XvxlJePRCePRCePRCeEQYEB4DIDx6ITx6ITz6Yd56ITx6ITwGN7sQUdtYv3K665RSf15bL6bHIuPG/P3aeeWUjreWqvJ+hwamJ7S49PyDrYXw6IXw6IXw6IXwiDAgPAZAePRCePRCePTDvPVCePRCeHw3C9Fn6pkcVWnfdR1pKtSOimP6ODc5Fhq3lWcorSFPRT2N6hwf0vzi6h5bwqMXwqMXwqMXwiPCgPAYAOHRC+HRC+HRD/PWC+HRC+Hx7w1NT6pq4KZOtJVpV9VpbcpPiUXGz0rSlFx3Vue6atQy2qfHC4l/LUJ49EJ49EJ49EJ4RBgQHgMgPHohPHohPPph3nohPHohPC47FvNzahju0c83q7Sn5hd9WpQai4xJhQf1XXWWMtsvq3awS3/MPk74eldCePRCePRCePRCeEQYEB4DIDx6ITx6ITz6Yd56ITx6CWt4fBJZ1I2xAeXeqdfB33P0RekPscj4Sd4+fXP5Jx1tKVFFf7v6p8YViX64fRnjifDohfDohfDohfCIMCA8BkB49EJ49EJ49MO89UJ49BKG8BiJPtPdR2Mqu9eqjOZifX3pR23Ie7kv45e/HlHqtQsquHNNtx4Oan4xmvA1vy/CoxfCoxfCoxfCI8Jg1cPj8cxsJX2+Q0mf79DxzOyEH4AgCI9eCI9eCI9+mLdeCI9eHMPjyMyUfnvQqZPtFfr2aqaSCg7EIuOW4sPaW5ut7M5qNY30auqp1+8bwqMXwqMXwqMXwiPCYFXD44WCMn31j72xPyenZqzr+Eh49EJ49EJ49MO89UJ49LLew+PjhadqGulVdme19tZma0vx4Zf7MhYc0LdXM3WyvUK/PejUyMxUwtf7oREevRAevRAevRAeEQarGh6/+sdeXa1tiv35j4d/KunzHQk/CO+L8OiF8OiF8OiHeeuF8OhlPYXH+cWoOseHVNTTqLSGPG0rz4hFxo9zk7Wj4piONBWqtO+6eiZHFYmG7+eU8OiF8OiF8OiF8IgwWNXwmPT5Dt3qvvvGv1svCI9eCI9eCI9+mLdeCI9e1mp4jESfq39qXBX97TraUqJvLv+kT/L2xULjF6U/6ODvOcq9U68bYwOaXYgkfM1rAeHRC+HRC+HRC+ERYUB4DIDw6IXw6IXw6Id564Xw6GWthMfxuVnVDnYps/2yvqvOUlLhwVhk/LQoVXtqftHPN6vUMNyjyXl+R7wO4dEL4dEL4dEL4RFhQHgMgPDohfDohfDoh3nrhfDoJRHhcSayoLaxfuV01yml/ry2XkyPRcZN+SnaVXVaJ9rKVDVwU0PTkwk/RusJ4dEL4dEL4dEL4RFhsOrh8W0k+qC8LcKjF8KjF8KjH+atF8Kjlw8dHucXl9Q9MayS3malN+Zre/nRWGT8KPd7bS8/qvTGfJX0Nqt7YlgLIdyXMZ4Ij14Ij14Ij14IjwiDVQ2PbgiPXgiPXgiPfpi3XgiPXuIZHheXnmtgekKV9zt0vLVUO6+c0sb8/bHIuPViulLqzyunu05tY/2aiRBU4o3w6IXw6IXw6IXwiDAIXXg8npn9L2dXJqdm/O3tLxSUvfasTMKjF8KjF8KjH+atF8KjlyDhcXJ+TvVDt5XVUand1We0ufBQLDJuLjyk3dVnlNVRqfqh2xqfYw6sBsKjF8KjF8KjF8IjwiAh4fHV+Jf0+Q4dz8xelfv+6h97//LnCwVlr739hYKy18ZJwqMXwqMXwqMf5q0XwqOXtw2PswsR3RgbUO6deh38PUdflP4Qi4yf5O3TN5d/0tGWElX0t6t/alyLS88T/tjCiPDohfDohfDohfCIMFj18Pi6swyTUzMSsr/j34XFN32d8OiF8OiF8OiHeeuF8OhlpfC4EH2mnslRlfZd15GmQu2oOKaPc5NjoXFbeYbSGvJU1NOozvEhzS9GE/448E+ERy+ERy+ERy+ER4TBqobH45nZfxv5klMzVu3Mx+X3+aYzHpefmbn8jEnCoxfCoxfCox/mrRfCo5fJ6XndmxhX1cBNnWgr066q09qUnxKLjJ+VpCm57qzOddWoZbRPjxf4fbuWER69EB69EB69EB4RBqsaHr/6x17d6r772q/f6r77l0uhP6QXUfFd/k1yakYsnr4Ij0/mozAwPbOgP6fmE74OxMfMbEQPJ58kfB0fyvz8UsLXsNrGmLdWHv75RDNPIglfB97P2OMZ1T+4rZ87qrTnt/+u/6XocCwyJhUc0H+p+n91srVCVf239ODRZMLXi3czOT2vR4+fJnwdiI/px08tXuOG8bXPSmaeRDQ+OZfwdSA+ZucWNfan73sWF4kOd+vdqobHpM93vDE8rtbl1ldrm5T0+Q798fDPd/p3y9f4Ijw+evwUBiam5vVw8knC14H4mJx+qrE/fZ/Px08WEr6G1TbKvLUy9uesJtfAOvAWz9XUrJoe3NX5m7VKqT2vLy7+37HIuCEvWV+VH1Nafb7yuxp0Y2RQf/7/0Qrr1/ijOU084nl0MTE1r4eP5hK+jqDC+NpnJX9Oz1u/xg0jmsLal+hwt96F8ozH9znTcfka+VRrT0/mudTaCZda+2HeeuFS67UpEn2mu4/GVHavVRnNxfr60o/akPdyX8Yvfz2i1GsXVHDnmm49HNSTyD8vxw3yqdZYe7jU2guXWnvhUmsvXGqNMAjdHo/LL5V+m6+v9CnYL9ZIePRCePRCePTDvPVCeFwbRmam9NuDTp1sr9C3VzOVVHAgFhm3FB/W3tpsZXdWq2mkV1NPXz9TCY9eCI9eCI9eCI9eCI8Ig1B9qvUfD//8lw+KWe7FmZivhscX63pheRglPHohPHohPPph3nohPK6+xwtP1TLap3NdNUquO6vPStJikXFTfop2VZ3WibYyVQ3c1ND05Dt9b8KjF8KjF8KjF8KjF8IjwmDVw2N06Z9nPr4a/lb706zjgfDohfDohfDoh3nrhfD4Yc0vRtU5PqSinkalNeRpW3lGLDJ+nJusHRXHdKSpUKV919UzOaqFaLDngvDohfDohfDohfDohfCIMEhIeHRBePRCePRCePTDvPVCeIyfxaXn6p8aV0V/u462lOibyz/pk7x9sdD4RekPOvh7jnLv1OvG2IBmFyJxXwPh0Qvh0Qvh0Qvh0QvhEWFAeAyA8OiF8OiF8OiHeeuF8Bjg2M3Nqn7otrI6KrW7+ow2Fx6KRcbNhYe0u/qMsjoqVT90W5PzqzMHCY9eCI9eCI9eCI9eCI8Ig1UNj1drm5T0+Q5drW16p6+tVYRHL4RHL4RHP8xbL4THtzMTWVDbWL9yuuuUUn9eWy+mxyLjxvz92nnllI63lqryfocGpie0uPQ8IeskPHohPHohPHohPHohPCIMVjU8vulTq9/0qddrDeHRC+HRC+HRD/PWC+Hxr+YXl9Q9MayS3malN+Zre/nRWGT8KPd7bS8/qvTGfJX0Nqt7Yljzi2sn9BEevRAevRAevRAevRAeEQarGh6Xf3r0Sm513/3gn2wdT4RHL4RHL4RHP8xbL4TH/6mB6QlV3u/Q8dZS7bxyShvz98ci49aL6UqpP6+c7jq1jfVrJrK2owHh0Qvh0Qvh0Qvh0QvhEWFAeAyA8OiF8OiF8OiHeeslbOFxcn5ODcM9+vlmlfbU/KJPi1JjkTGp8KC+q85SZvtl1Q52aXxu/f2sEx69EB69EB69EB69EB4RBqsaHr/6x943hsev/rE34QflbREevRAevRAe/TBvvTiHx9mFiG6MDSj3Tr0O/p6jL0p/iEXGT/L26ZvLP+loS4kq+tvVPzWuSDQx+zLGE+HRC+HRC+HRC+HRC+ERYbCq4fFCQdnf7uH4pj0g1xrCoxfCoxfCox/mrReX8BiJPlPP5KhK+67rSFOhdlQc08e5ybHQuK08Q2kNeSrqaVTn+JDmF6MJX/OHQHj0Qnj0Qnj0Qnj0QnhEGKxqeIwu/fOsx5XOavzqH3vX1WXW0SXCoxvCoxfCox/mrZf1Gh5HZqb024NOnWyv0LdXM5VUcCAWGbcUH9be2mxld1araaRXjxfC8zuF8OiF8OiF8OiF8OiF8IgwWPXwGF3655mPSZ/v+Bfr6UzHFwiPXgiPXgiPfpi3XtZDeJx6OqemkV5ld1Zrb222thQffrkvY8EBfXs1UyfbK/Tbg06NzEwlfL2JRHj0Qnj0Qnj0Qnj0QnhEGCQkPLogPHohPHohPPph3npZa+HxSWRRtx4OquDONaVeu6Avfz0Si4wb8pL19aUfldFcrLJ7rbr7aEyR6NpZ+1pAePRCePRCePRCePRCeEQYEB4DIDx6ITx6ITz6Yd56SWR4jESf6+6jMZXda1VGc7G+vvSjNuS93Jfxy1+PKPXaBRXcuaZbDwf1JEKAeRPCoxfCoxfCoxfCoxfCI8KA8BgA4dEL4dEL4dEP89bLaobHP2Yfq3awS5ntl/VddZaSCg/GIuOnRanaU/OLfr5ZpYbhHk09ZW68D8KjF8KjF8KjF8KjF8IjwoDwGADh0Qvh0Qvh0Q/z1suHCo+PF56qZbRP57pqlFx3Vp+VpMUi46b8FO2qOq0TbWWqGripoenJhB8HF4RHL4RHL4RHL4RHL4RHhAHhMQDCoxfCoxfCox/mrZd4hMf5xSV1jg+pqKdRaQ152laeEYuMH+cma0fFMR1pKlRp33X1TI5qgX0ZPxjCoxfCoxfCoxfCoxfCI8KA8BgA4dEL4dEL4dEP89bLu4bHxaXnGpieUOX9Dh1vLdXOK6e0MX9/LDRuvZiulPrzyumuU9tYv2YXIgl/jGFCePRCePRCePRCePRCeEQYEB4DIDx6ITx6ITz6Yd56eVN4HJ+bVf3QbWV1VGp39RltLjwUi4ybCw9pd/UZZXVUqn7otsbn+NlINMKjF8KjF8KjF8KjF8IjwoDwGADh0Qvh0Qvh0Q/z1svy8DgTWVDbWL9yuuuUUn9eWy+mxyLjxvz92nnllI63lqryfocGpie0uPQ84evHvyI8eiE8eiE8eiE8eiE8IgwIjwEQHr0QHr0QHv0wbz0sRJ+pe2JY/6OjXv+1MV/by4/GIuNHud9re/lRpTfmq6S3Wd0Tw5pfJGatB4RHL4RHL4RHL4RHL4RHhAHhMQDCoxfCoxfCox/m7fo0ND2pqoGbOtFWpl1Vp7UpPyUWGT8rSVNy3Vmd66pRy2ifZiK8MV6vCI9eCI9eCI9eCI9eCI8IA8JjAIRHL4RHL4RHP8zbtW9yfk4Nwz36+WaV9tT8ok+LUmORManwoL6rzlJm+2XVDnbpzugfgT/VGmsH4dEL4dEL4dEL4dEL4RFhQHgMgPDohfDohfDoh3m7tjyJLOrG2IBy79Tr4O85+qL0h1hk/CRvn765/JOOtpSoor9d/VPjikT/dV/Gd/1Ua6xthEcvhEcvhEcvhEcvhEeEAeExAMKjF8KjF8KjH+Zt4kSiz3T30ZjK7rUqo7lYX1/6URvykmOh8ctfjyj12gUV3LmmWw8HNb8YfeP3JDx6ITx6ITx6ITx6ITx6ITwiDAiPARAevRAevRAe/TBvV8/IzJR+e9Cpk+0V+vZqppIKDsQi45biw9pbm63szmo1jfRq6un7/T8jPHohPHohPHohPHohPHohPCIMCI8BEB69EB69EB79MG8/jKmnc2oa6VV2Z7X21mZrS/Hhl/syFhzQt1czdbK9Qr896NTIzFTc7pfw6IXw6IXw6IXw6IXw6IXwiDAgPAZAePRCePRCePTDvA1ufjGqWw8HVXDnmlKvXdCXvx6JRcYNecn6+tKPymguVtm9Vt19NKZI9MOFQcKjF8KjF8KjF8KjF8KjF8IjwoDwGADh0Qvh0Qvh0Q/z9t1Eos/VPzWuiv52HW0p0TeXf9IneftiofGL0h908Pcc5d6p142xAT2JrG5kIDx6ITx6ITx6ITx6ITx6ITwiDAiPARAevRAevRAe/TBv33B8Zh+rdrBLme2X9V11lpIKD8Yi46dFqdpT84t+vlmlhuEeTc4n/v8G4dEL4dEL4dEL4dEL4dEL4RFhQHgMgPDohfDohfDoh3n70kxkQS2jfTrXVaPkurP6rCQtFhk35adoV9VpnWgrU9XATQ1NTyZ8vSshPHohPHohPHohPHohPHohPCIMCI8BEB69EB69EB79hHXezi8uqXtiWCW9zUpvzNf28qOxyPhR7vfaXn5U6Y35KultVvfEsBY+4L6M8UR49EJ49EJ49EJ49EJ49EJ4RBgQHgMgPHohPHohPPoJw7xdXHqugekJVd7v0PHWUu28ckob8/fHIuPWi+lKqT+vnO46tY31ayayft9IEh69EB69EB69EB69EB69EB4RBoTHAAiPXgiPXgiPfhzn7fjcrOqHbiuro1K7q89oc+GhWGTcXHhIu6vPKKujUvVDtzU+5/X4CY9eCI9eCI9eCI9eCI9eCI8IA8JjAIRHL4RHL4RHP+t93s4uRNQ21q+c7jql1J/X1ovpsci4MX+/dl45peOtpaq836GB6QktLj1P+Jo/JMKjF8KjF8KjF8KjF8KjF8IjwoDwGADh0Qvh0Qvh0c96mrcL0WfqmRxVad91HWkq1I6KY/o4NzkWGreVZyitIU9FPY3qHB/S/GL4gg3h0Qvh0Qvh0Qvh0Qvh0QvhEWFAeAyA8OiF8OiF8OhnLc/boelJVQ3c1Im2Mu2qOq1N+SmxyPhZSZqS687qXFeNWkb79HiBORNdIjy6ITx6ITx6ITx6ITx6ITwiDAiPARAevRAevRAe/ayVeTv1dE4Nwz36+WaV9tT8ok+LUmORManwoL6rzlJm+2XVDnbpj9nHCV/vWkV49EJ49EJ49EJ49EJ49EJ4RBgQHgMgPHohPHohPPpJxLx9ElnUrYeDKrhzTanXLujLX4/EIuOGvGR9felHZTQXq+xeq+4+GlMk6r0vYzwRHr0QHr0QHr0QHr0QHr0QHhEGhMcACI9eCI9eCI9+PvS8jUSf6e6jMZXda1VGc7G+vvSjNuS93Jfxy1+PKPXaBRXcuaZbDwf1JMKb8iAIj14Ij14Ij14Ij14Ij14IjwgDwmMAhEcvhEcvhEc/8Z63IzNT+u1Bp062V+jbq5lKKjgQi4xbig9rb222sjur1TTSq6mn/CzFG+HRC+HRC+HRC+HRC+HRC+ERYUB4DIDw6IXw6IXw6CfIvH288FRNI73K7qzW3tpsbSk+/HJfxoID+vZqpk62V+i3B50amZlK+GMNA8KjF8KjF8KjF8KjF8KjF8IjwoDwGADh0Qvh0Qvh0c/bztv5xag6x4dU1NOotIY8bSvPiEXGj3OTtaPimI40Faq077p6JkcViRK/EoHw6IXw6IXw6IXw6IXw6IXwiDAgPAZAePRCePRCePSz0ryNRJ+rf2pcFf3tOtpSom8u/6RP8vbFQuMXpT/o4O85yr1TrxtjA5pdiCT8ceCfCI9eCI9eCI9eCI9eCI9eCI8IA8JjAIRHL4RHL4RHP39MzGp8bla1g13KbL+s76qzlFR4MBYZPy1K1Z6aX/TzzSo1DPdocp7nfy0jPHohPHohPHohPHohPHohPCIMCI8BEB69EB69EB7Xv5nIgtrG+pXTXaeU+vP6vPi/xiLjxvz92nnllI63lqryfocGpicSvl68G8KjF8KjF8KjF8KjF8KjF8IjwoDwGADh0Qvh0QvhcX2ZX1xS98SwSnqbld6Yr+3lR2OR8aPc77W9/KgO1uaopLdZ3RPDml8kcKx3hEcvhEcvhEcvhEcvhEcvhEeEAeExAMKjF8KjF8Lj2rW49FwD0xOqvN+h462l2nnllDbm749Fxq0X05VSf1453XVqG+vXTOSfb5aYt14Ij14Ij14Ij14Ij14Ij14IjwgDwmMAhEcvhEcvhMe1Y3J+TvVDt5XVUand1We0ufBQLDJuLjyk3dVnlNVRqfqh2xqfe/1MZd56ITx6ITx6ITx6ITx6ITx6ITwiDAiPARAey635FQAAIABJREFUvRAevRAeE2N2IaIbYwPKvVOvg7/n6IvSH2KR8ZO8ffrm8k862lKiiv529U+Na3Hp+Vt/b+atF8KjF8KjF8KjF8KjF8KjF8IjwoDwGADh0Qvh0QvhcRWOcfSZeiZHVdp3XUeaCrWj4pg+zk2OhcZt5RlKa8hTUU+jOseHNL8YDXR/zFsvhEcvhEcvhEcvhEcvhEcvhEeEAeExAMKjF8KjF8Jj/A1NT6pq4KZOtJVpV9VpbcpPiUXGz0rSlFx3Vue6atQy2qfHC/H/v8S89UJ49EJ49EJ49EJ49EJ49EJ4RBgQHgMgPHohPHohPAYz9XROTSO9yu6s1t7abG0pPhyLjEkFB/Tt1UydbK/Qbw86NTIztSprYt56ITx6ITx6ITx6ITx6ITx6ITwiDAiPARAevRAevRAe396TyKJuPRxUwZ1rSr12QV/+eiQWGTfkJevrSz8qo7lYZfdadffRmCLRxMQi5q0XwqMXwqMXwqMXwqMXwqMXwiPCgPAYAOHRC+HRC+FxZZHoc919NKaye63KaC7W15d+1Ia8l/syfvnrEaVeu6CCO9d06+GgnkTWzhtP5q0XwqMXwqMXwqMXwqMXwqMXwiPCgPAYAOHRC+HRC+Hxn/6YfazawS5ltl/Wd9VZSio8GIuMW4oPa29ttrI7q9U00qupp2v7eDFvvRAevRAevRAevRAevRAevRAeEQaExwAIj14Ij17CGB4fLzxVy2ifznXVKLnurD4rSYtFxk35KdpVdVon2spUNXBTQ9OTCV/vu2LeeiE8eiE8eiE8eiE8eiE8eiE8IgwIjwEQHr0QHr24h8f5xag6x4dU1NOotIY8bSvPiEXGj3OTtaPimI40Faq077p6Jke1kKB9GeOJeeuF8OiF8OiF8OiF8OiF8OiF8IgwIDwGQHj0Qnj04hQeF5eeq39qXBX97TraUqJvLv+kT/L2xULjF6U/6ODvOcq9U68bYwOaXYgkfM0fAvPWC+HRC+HRC+HRC+HRC+HRC+ERYUB4DIDw6IXw6GU9h8fxuVnVD91WVkeldlef0ebCQ7HIuLnwkHZXn1FWR6Xqh25rcn59Psb3wbz1Qnj0Qnj0Qnj0Qnj0Qnj0QnhEGBAeAyA8eiE8elkv4XEmsqC2sX7ldNcppf68tl5Mj0XGjfn7tfPKKR1vLVXl/Q4NTE9ocel5wtecKMxbL4RHL4RHL4RHL4RHL4RHL4RHhAHhMQDCoxfCo5e1GB4Xos/UPTGskt5mpTfma3v50Vhk/Cj3e20vP6r0xnyV9Dare2JY84u8iV+OeeuF8OiF8OiF8OiF8OiF8OiF8IgwIDwGQHj0Qnj0shbC49D0pKoGbupEW5l2VZ3WpvyUWGT8rCRNyXVnda6rRi2jfZqJ8IbgTZi3XgiPXgiPXgiPXgiPXgiPXgiPCAPCYwCERy+ERy+rHR4n5+fUMNyjn29WaU/NL/q0KDUWGZMKD+q76ixltl9W7WCX/ph9nPDjsx4xb70QHr0QHr0QHr0QHr0QHr0QHhEGhMcACI9eCI9ePmR4nF2I6MbYgHLv1Ovg7zn6ovSHWGT8JG+fvrn8k462lKiiv139U+OKRMO7L2M8MW+9EB69EB69EB69EB69EB69EB4RBoTHAAiPXgiPXuIVHiPRZ+qZHFVp33UdaSrUjopj+jg3ORYat5VnKK0hT0U9jeocH9L8YjThj90V89YL4dEL4dEL4dEL4dEL4dEL4RFhQHgMgPDohfDo5X3D48jMlH570KmT7RX69mqmkgoOxCLjluLD2lubrezOajWN9OrxAj8vq4l564Xw6IXw6IXw6IXw6IXw6IXwiDAgPAZAePRCePTyNuFx6umcmkZ6ld1Zrb212dpSfPjlvowFB/Tt1UydbK/Qbw86NTIzlfDHFHbMWy+ERy+ERy+ERy+ERy+ERy+ER4QB4TEAwqMXwqOXV8Pj/GJUtx4OquDONaVeu6Avfz0Si4wb8pL19aUfldFcrLJ7rbr7aEyRKEFkrWHeeiE8eiE8eiE8eiE8eiE8eiE8IgwIjwEQHr0QHn1Eos91d2JMBV2NOtpSom8u/6RP8vbFQuMXpT/o4O85yr1TrxtjA3oS4c3VesC89UJ49EJ49EJ49EJ49EJ49EJ4RBgQHgMgPHohPK5ff8w+Vu1glzLbL+u76iwlFR6MRcZPi1K1p+YX/XyzSg3DPZqc/zCfdI1VeJ6Zt1YIj14Ij14Ij14Ij14Ij14IjwgDwmMAhEcvhMf14fHCU7WM9ulcV42S687qs5K0WGTclJ+iXVWndaKtTJX3OtQ5PJzw9SJ+mLdeCI9eCI9eCI9eCI9eCI9eCI8IA8JjAIRHL4THtWd+cUmd40Mq6mlUWkOetpVnxCLjx7nJ2lFxTEeaClXad109k6NaWLYv4/t+qjXWLuatF8KjF8KjF8KjF8KjF8KjF8IjwoDwGADh0QvhMbEWl55rYHpClfc7dLy1VDuvnNLG/P2x0Lj1YrpS6s8rp7tObWP9ml2I/O33Izz6Yd56ITx6ITx6ITx6ITx6ITx6ITwiDAiPARAevRAeV9f43Kzqh24rq6NSu6vPaHPhoVhk3Fx4SLurzyiro1L1Q7c1Pvfu/88Ij36Yt14Ij14Ij14Ij14Ij14Ij14IjwgDwmMAhEcvhMcPZ3YhoraxfuV01yml/ry2XkyPRcaN+fu188opHW8tVeX9Dg1MT2hx6Xng+yQ8+mHeeiE8eiE8eiE8eiE8eiE8eiE8IgwIjwEQHr0QHuNjIfpMPZOjKu27riNNhdpRcUwf5ybHQuO28gylNeSpqKdRneNDml/8MG9UCY9+mLdeCI9eCI9eCI9eCI9eCI9eCI8IA8JjAIRHL4TH9zM0PamqgZs60VamXVWntSk/JRYZPytJU3LdWZ3rqlHLaJ8eL6ze8SU8+mHeeiE8eiE8eiE8eiE8eiE8eiE8IgwIj29wPDNbSZ/viElOzYh9jfDohfD4ZpPzc2oY7tHPN6u0p+YXfVqUGouMSYUH9V11ljLbL6t2sEt/zD5O6FoJj36Yt14Ij14Ij14Ij14Ij14Ij14IjwgDwuMbfPWPvX/584WCMkWXCI9uCI+vHI/Iom6MDSj3Tr0O/p6jL0p/iEXGT/L26ZvLP+loS4kq+tvVPzWuSDT4vozxRHj0w7z1Qnj0Qnj0Qnj0Qnj0Qnj0QnhEGBAe39GFgrLYWY+ERy9hDo+R6DPdfTSmsnut+v/au9fnKM6zwcP/XezYq0p5s6ZS3myqvFCuVBmnXle2XEQ2IfJSeL0qgp3YWip2YXs5iYOJwGAgHMzRgDkGDMEYMCchCxAICRG/n+73w+6MhSIOM90wrXuuD9cHNFJPzzz0Mz2/6e7p3rMqXvrsnXh62Y/XZfzlX9+Orh1Lovf4jjh8+WwM3xlr+To/jPCYj/k2F+ExF+ExF+ExF+ExF+ExF+GRdiA8Nqizq9sRj0m1U3j87sZg/O3bI/HnA+viN5t6oqP39/XI+PNVb8asrYti0ZHNsfu7r2Pw9tSMd8JjPubbXITHXITHXITHXITHXITHXIRH2oHw2IAlvX3RMW16/d+18DhwbZgE+r+/FZev3mz5epTt3NXB2HzqSPyf/Rvif2z+IP7zyjfrkfE/LZ8dL294L+bvXhN9J/bHiUsXW76+Zbk6OJx6+7x2Y6Tl6/CkXei/0fJ1oDwX+2/E1cFbLV8PynHp6lD0f288s7g8cDOuDOTbJ2pXV76/GZcTjGc77vtM5urgrbiUeB+3HWV+z5JFq1vUVCc8PqJNW3dHx7TpcfHy1frPauHx5vAYCQzeGIn+wVstX49Cj+Hm7Thw4ZtYdmxHvPnFkvhvff+7HhmfWtoZ/33t/Ji3szdWHt8dhy+dixu3Rlu+zo/LjaHRuDxws+Xr8bjcut1+LvUPtXwdKM+VgZsxNHyn5etBOa4O3orrQ6MtXw/K8f314Ri8MdLy9aAc1/9/sGv1ehQ1fLv1+19VcOPmaFwemNrvWfjR0K07msIU0OoeNdUJj49g4pGONU61zuXm8NQ61Xp07Ic4PXgl1p0+EPP3ro5fr/9T/HTZ6/XQ+MKat2LOF4tj6fHt8dWlMzE0MtrydX6SnGqdj/k2F6da5zJwzanWmTjVOhenWufiVOtcnGpNOxAeH6Kzq7v+ZTITCY+5VD08Xhy6HlvPHo2eA+vj1c0Lo2PFnHpkfG5lV7y25cP44NDG2Hn+RAwMC27CYz7m21yEx1yEx1yEx1yEx1yEx1yER9qB8PgAFy9fjY5p0yd1+NhJ4TGZKoXHG6MjsffCqfj46Jbo3PZRPL96bj0yPrt8dryy8f14d39fbDxzKM5dG2j5+laR8JiP+TYX4TEX4TEX4TEX4TEX4TEX4ZF2IDwWIDzm0qrwOHznbhzrPx+rv94T83YtjxfXzq9Hxp8s/V28uHZ+zNu1PFZ/vSeO9Z+PkTFv1B+F8JiP+TYX4TEX4TEX4TEX4TEX4TEX4ZF2IDwWIDzm8iTC4527P8SZa/2x4ZuDsWDfmnj58/fimeVv1CPjLz6dF7O3fxKLj22L/ZdOx41RO4nNEh7zMd/mIjzmIjzmIjzmIjzmIjzmIjzSDoTHAoTHXB5HeBwYvhXbz/09Fh7cEL/d/Jf42Yo/1CPjz1b8IX67+S+x8OCG2H7u73Hllv9LZRIe8zHf5iI85iI85iI85iI85iI85iI80g6ExwKEx1yKhsehkdH46tKZWHp8e8z5YnG8sOatemT86bLX49fr/xTz966OdacPxOnBK3Hn7g8tf8yZCY/5mG9zER5zER5zER5zER5zER5zER5pB8JjAcJjLo2Ex5Gxf8aJgQux5tSX8fbuFTF93R/jqaWd9dD4q7XdMXfnslh5YlccuXIuhu+MtfzxtRvhMR/zbS7CYy7CYy7CYy7CYy7CYy7CI+1AeCxAeMzlQeHx3LWB2HjmULy7vy9e2fh+PLt8dj0yPr96bnRu+yg+Prol9l44FddHqvHN2O1OeMzHfJuL8JiL8JiL8JiL8JiL8JiL8Eg7EB4LEB5zqYXHwdu3Yuf5E/HBoY3x2pYP47mVXfXI2LFiTry6eWH0HFgfW88ejYtD11u+3kxOeMzHfJuL8JiL8JiL8JiL8JiL8JiL8Eg7EB4LEB6nvpujd+Lw5bPRe3xHzNn+f+OFT/9XPTI+vawzXvrsnejesyr6/rEvTn5/KUbHXJdxqhAe8zHf5iI85iI85iI85iI85iI85iI80g6ExwKEx6lldOyfcfL7S9H3j33RvWdVvPTZO/H0sh+vy/hf17wds7d+Er3Hd8Thy2fj5qgd7qlMeMzHfJuL8JiL8JiL8JiL8JiL8JiL8Eg7EB4LEB6r7bsbg/G3b4/Enw+si99s6omO3t/XI+PPV70Zs7YuikVHNsfu776Owdu3Cn+rNdUiPOZjvs1FeMxFeMxFeMxFeMxFeMxFeKQdCI8FCI/VcX3kduy9cCo+ProlOrd9FM+vnluPjM8unx2vbHw/3t3fFxvPHIpz1wYmXYbwmIvwmI/5NhfhMRfhMRfhMRfhMRfhMRfhkXYgPBYgPLbG8J2xOHLlXKw8sSvm7lwWv1rbXY+MTy3tjOnr/hhv714Ra059GScGLsTI2KO9sRUecxEe8zHf5iI85iI85iI85iI85iI85iI80g6ExwKEx8dvdOyHOD14JdadPhDz966OX6//U/x02ev10PjCmrdizheLY+nx7fHVpTMxNDLa9H0Jj7kIj/mYb3MRHnMRHnMRHnMRHnMRHnMRHmkHwmMBwmP5rtwaiq1nj0bPgfXx6uaF0bFiTj0yPreyK17b8mF8cGhj7Dx/IgaGy41KwmMuwmM+5ttchMdchMdchMdchMdchMdchEfagfBYgPBYzI3Rkdh/6XQsPrYtZm//JH7x6bx6ZHxm+Rvx8ufvxYJ9a2LDNwfjzLX+x74+wmMuwmM+5ttchMdchMdchMdchMdchMdchEfagfBYgPD46Ibv3I1j/edj9dd7Yt6u5fHi2vn1yPiTpb+LF9fOj3m7lsfqr/fEsf7zMXznyb95ER5zER7zMd/mIjzmIjzmIjzmIjzmIjzmIjzSDoTHAoTH+ztzrT82fHMwFuxbEy9//l48s/yNemT8xafzYvb2T2LxsW2x/9LpuDFajR0h4TEX4TEf820uwmMuwmMuwmMuwmMuwmMuwiPtQHgsQHj8fwaGb8XO8yfig0Mb47UtH8ZzK7vqkbFjxZx4dfPC6DmwPraePRpXblX3+RIecxEe8zHf5iI85iI85iI85iI85iI85iI80g6ExwLaMTwOjYzGV5fOxNLj22POF4vjhTVv1SPjT5e9Hr9e/6eYv3d1rDt9IE4PXonRsR9avs6PSnjMRXjMp93m2+yEx1yEx1yEx1yEx1yEx1yER9qB8FhA9vA4MvbPODFwIdac+jLe3r0ipq/7Yzy1tLMeGn+1tjvm7lwWK0/siiNXzsXwnbGWr3MRwmMuwmM+mefbdiQ85iI85iI85iI85iI85iI80g6ExwKyhcdz1wZi45lD8e7+vnhl4/vx7PLZ9cj4/Oq50bnto/j46JbYe+FUXB/JF+iEx1yEx3wyzbcIj9kIj7kIj7kIj7kIj7kIj7QD4bGAqRweB2/fit3ffR2LjmyOWVsXxc9XvfnjdRl7fx+/2dQTfz6wLv727ZH47sZgy9f3SRAecxEe85mq8y2TEx5zER5zER5zER5zER5zER5pB8JjAVMlPN4cvROHL5+N3uM7omvHkvjlX9+uR8anl3XGS5+9E917VkXfP/bFye8vxehYe74RFB5zER7zmQrzLY9OeMxFeMxFeMxFeMxFeMxFeKQdCI8FVDE8jo79ECe/vxR9/9gX3XtWxUufvRNPL/vxuoy//Ovb0bVjSfQe3xGHL5+Nm6N2KmuEx1yEx3yqNt9SjPCYi/CYi/CYi/CYi/CYi/BIOxAeC6hCeLw4dD22nj0aPQfWx6ubF0bHijn1yPjcyq54bcuH8cGhjbHz/IkYvC3CPIjwmIvwmE+r51vKJTzmIjzmIjzmIjzmIjzmIjzSDoTHAp50eLw+cjv2XjgVHx/dEp3bPornV8+tR8Znl8+OVza+H+/u74uNZw7FuWsDLX9+phrhMRfhMR/hMRfhMRfhMRfhMRfhMRfhMRfhkXYgPBbwOMPj8J27ceTKuVh5YlfM3bksfrW2ux4Zn1raGdPX/THe3r0i1pz6Mk4MXIiRNr0uY5mEx1yEx3yEx1yEx1yEx1yEx1yEx1yEx1yER9qB8FhAWeHxzt0f4sy1/tjwzcFYsG9NvPz5e/HM8jfqofGFNW/FnC8Wx9Lj2+OrS2diaGS05Y89I+ExF+ExH+ExF+ExF+ExF+ExF+ExF+ExF+GRdiA8FtBseLxyayi2n/t7LDy4IX67+S/xsxV/qEfGn634Q/x2819i4cENsf3c32NgWDh5UoTHXITHfITHXITHXITHXITHXITHXITHXIRH2oHwWMCjhMcboyOx/9LpWHxsW8ze/kn84tN59cj4zPI34uXP34sF+9bEhm8Oxplr/XHn7g8tf1ztSnjMRXjMR3jMRXjMRXjMRXjMRXjMRXjMRXikHQiPBUwMjyNj/4xj/edj9dd7Yt6u5fHi2vn1yPiTpb+LF9fOj3m7lsfqr/fEsf7zMXzHDnqVCI+5CI/5CI+5CI+5CI+5CI+5CI+5CI+5CI+0A+GxgIv9Q7H66Jfx7v6+eGXj+/Hs8tn1yPhfVv3PeH3bx/Hx0S2x98KpuDHqxb7qhMdchMd8hMdchMdchMdchMdchMdchMdchEfagfBYwMX+ofjJ0t9FR+/v4982L4yeA+tjy7dH4sKNay1fNxonPOYiPOYjPOYiPOYiPOYiPOYiPOYiPOYiPNIOhMcCLvYPxYFvv235elAO4TEX4TEf4TEX4TEX4TEX4TEX4TEX4TEX4ZF2IDwW0Oy3WlNNwmMuwmM+5ttchMdchMdchMdchMdchMdchEfagfBYgPCYi/CYi/CYj/k2F+ExF+ExF+ExF+ExF+ExF+GRdiA8FiA85iI85iI85mO+zUV4zEV4zEV4zEV4zEV4zEV4pB0IjwUIj7kIj7kIj/mYb3MRHnMRHnMRHnMRHnMRHnMRHmkHwmMBwmMuwmMuwmM+5ttchMdchMdchMdchMdchMdchEfagfBYgPCYi/CYi/CYj/k2F+ExF+ExF+ExF+ExF+ExF+GRdiA8FiA85iI85iI85mO+zUV4zEV4zEV4zEV4zEV4zEV4pB0IjwUIj7kIj7kIj/mYb3MRHnMRHnMRHnMRHnMRHnMRHmkHwmMBwmMuwmMuwmM+5ttchMdchMdchMdchMdchMdchEfagfBYgPCYi/CYi/CYj/k2F+ExF+ExF+ExF+ExF+ExF+GRdiA8FiA85iI85iI85mO+zUV4zEV4zEV4zEV4zEV4zEV4pB0IjwUIj7kIj7kIj/mYb3MRHnMRHnMRHnMRHnMRHnMRHmkHwiMAAAAAUDrhEQAAAAAonfAIAAAAAJROeAQAAAAASic8Nqmzqzs6pk2PjmnTo7Oru+Xrw+Mbt01bd8eMmbNavu4UG88FPYvqv2u7raZGxnNJb5/xnAKafa3ctHV3dEybHoePnWz5Y6C58Zy4jda0+jHQ3HjWjB/LTVt3t/wx0Ph4Xrx8ddJt0/ZZLY1unzNmzjKWFVZkPO3jkoHw2IQFPYvumQA6u7pjQc+ilq8X5Y7b4WMn6xO+8Fg9jY7nxDGcMXNWLOnta/njoLnxnLgTZh6unmZfK2sf9giP1dLoeC7p7fNmqcIaHc9arBIbq6noe5MlvX1eQyukmX2i8bdP/Hum1nhOfI8yY+Ys2ydTnvDYhBkzZ93zZujwsZPC1BTQ7Lg54rGaim6H3hRXi/HMp5kxHT/fCo/V0uh42iarrdHxXNCzyId1FVb0NbRj2vS4ePlqyx8HzY3njJmz7vlQwHuXamlkPGsHvjzsZzDVCI8Nqn3iO/7FebKfUS1Fxs2Ld/WUsR12dnV7E1URZYynT4OrpZkxnTjXCo/V0cx4TjzV2utodTQznrUxHD+m9nuroehrqKMdq6XIfFvbr7WPWx2NjudkkVFrIAPhsUHC49QkPOZSxk62Tw6ro8h41t4IO7KqWhod08nmWeGxOsr6sMd2Wg2NjmfttvHbo9fR6ii6fXoPUy3NjGft9vEfDrT6cdD8eI6PyI/y+zAVCI8NEh6nJuExl6LjaXutljLmVdczqpZGx3Tilz/5AotqKWMbdapYdTQbHife5sOBaiiyfS7oWeRox4ppNlT5YKCaioRkX/5EJsJjE1zjcWpyjcdcmhlPO2LVVXReFTWqp4xrjoka1WEbzaXR8Zxse7SNVkcz26cDJ6qrkfF0UEz1lXEdcx8QMNUJj03wrdZT08PG7X6ngQmP1dToeDrNr9oaHc+J26TxrZ5m59waUaNaim6jrsNaLY2O54KeRfeM6ZLePvtGFdLMfOtox+pqdDw7pk2/53bbZ7UU2R+qfWgnIjPVCY9N6uzqrh/27M3u1PGgcZs46dcm+vFcqLlaHnU873fKgrBRLY1sn+N/1zxcXY2M6US2z+opso0KHNXT6PY5/pIIokb1NDKeLjtTfY1un+PnW9tn9TSzfTrFmkyERwAAAACgdMIjAAAAAFA64REAAAAAKJ3wCAAAAACUTngEAAAAAEonPAIAAAAApRMeAQAAAIDSCY8AAAAAQOmERwAAAACgdMIjAAAAAFA64REAAAAAKJ3wCAAAAACUTngEAAAAAEonPAIAAAAApRMeAQAAAIDSCY8AAAAAQOmERwAAAACgdMIjAAAAAFA64REA4DHp7OqOBT2LWr4ej+Li5avRMW16XLx8tanby7KgZ1F0dnW3/PkAAKA44REAoEEd06Y/0IyZs2LsrvDYjIeFx8PHTkbHtOlx+NjJUh5vzcTHtaBn0ZQZOwCAqhIeAQAKeFAIEx4b96SOeOzs6o4lvX0xdvffY0lvXz0W18Z0/L8BAGiO8AgAUMCjhMcFPYv+5WjI8cbfPjHuTbaMi5evxoyZs+rBrPbzTVt319dnsmVNvJ+OadPrtzUTHpf09t2zrFrIe5T7u98yOqZNf2B4nLgej/ocTzR+zGrP2fjnfNPW3S3/vwUAMNUJjwAABTwsPNaCYO1nM2bOuucoyIlH+G3auvtfItjEZdSWMz7A1f5ufHTr7Oq+Z9kLehb9S9Ss3d5oeKwFw/G/MzE+Puj+7reMhx3xOFl4fNhzPJn7hUdHOwIAlEd4BAAooNFTrZf09j009s2YOase0u53unbtiMfav+93ROKDItqmrbvrtzcaHieLoROj6YPu737LaCY8Pug5vp/7nWpdO9rxYdeABADg4YRHAIACioTHiadFj9dseBy/HhNDX+3vJjv9uZHweL/fneznjd7fkwqPk4XFTVt31/9uYpj0TdsAAI0THgEACigjPD5o+WWGx45p0+9Z1vgjFB9HeHzQ/dUee6vC42RmzJxVf/4edA1IAAAejfAIAFBAGadaT/a3D1rG2N3Gw+Nk8azZ8Dh29+GnWj/s/mrLmPjYWxUexx/tOHHdhEcAgOYIjwAABRQJj2N3f/zm54m/U1teWeFxstubPdW6to4P+nKZh91f7bGPfy5qz2UrwuP4ox1ry3WqNQBAMcIjAEABRcPj2N0f4+PE6yDebxljd5s71boWC8dfR7LZ8DjZ8savz8Pub/zjq91ee6xPOjwu6Fn0L8vw5TIAAMUJjwAAAABA6YRHAAAAAKB0wiMAAAAAUDrhEQAAAAAonfAIAAAAAJROeAQAAAAASic8AgAAAAClEx4BAAAAgNIJjwAAAABA6YRHAAAAAKB0wiMAAAAAUDrhEQAAAAAonfAIAAAAAJROeAQAAAAASic8AgAAAAClEx4BAAAAgNIJjwAAAABA6YRHAAAAAKB0wiMAAAAAUDrhEQAAAAAonfAIAACkrOviAAAAj0lEQVQAAJROeAQAAAAASic8AgAAAAClEx4BAAAAgNIJjwAAAABA6YRHAAAAAKB0wiMAAAAAUDrhEQAAAAAonfAIAAAAAJROeAQAAAAASic8AgAAAAClEx4BAAAAgNIJjwAAAABA6YRHAAAAAKB0wiMAAAAAUDrhEQAAAAAonfAIAAAAAJROeAQAAAAASvcfskObbkvJcAwAAAAASUVORK5CYII=", "text/html": [ "
| \n", " | Gas prices (€/MWh) | \n", "CO2 prices (€/ton) | \n", "CO2 prices (€/MWh) | \n", "Tsource (VDG) | \n", "Tsink (VDG) | \n", "MW (VDG) | \n", "Tsource (NDG) | \n", "Tsink (NDG) | \n", "MW (NDG) | \n", "Total demand | \n", "
|---|---|---|---|---|---|---|---|---|---|---|
| count | \n", "525600.000000 | \n", "525600.000000 | \n", "525600.000000 | \n", "525600.000000 | \n", "525600.000000 | \n", "525600.000000 | \n", "525600.000000 | \n", "525600.000000 | \n", "525600.000000 | \n", "525600.000000 | \n", "
| mean | \n", "13.538745 | \n", "24.864018 | \n", "4.683144 | \n", "63.658798 | \n", "138.637674 | \n", "17.636712 | \n", "62.176305 | \n", "145.351645 | \n", "5.823824 | \n", "23.460537 | \n", "
| std | \n", "3.644779 | \n", "2.142574 | \n", "0.403827 | \n", "6.422773 | \n", "14.328580 | \n", "5.123252 | \n", "10.252555 | \n", "14.896056 | \n", "1.691697 | \n", "6.814125 | \n", "
| min | \n", "7.530000 | \n", "18.700000 | \n", "3.520000 | \n", "25.310000 | \n", "82.480000 | \n", "0.000000 | \n", "13.540000 | \n", "106.330000 | \n", "0.000000 | \n", "0.000000 | \n", "
| 25% | \n", "10.380000 | \n", "23.670000 | \n", "4.460000 | \n", "64.892000 | \n", "126.074000 | \n", "17.014000 | \n", "63.516000 | \n", "131.551500 | \n", "5.612000 | \n", "22.676000 | \n", "
| 50% | \n", "12.850000 | \n", "25.080000 | \n", "4.720000 | \n", "64.991000 | \n", "142.450000 | \n", "19.892000 | \n", "64.313000 | \n", "148.490000 | \n", "6.540000 | \n", "26.441000 | \n", "
| 75% | \n", "15.600000 | \n", "26.290000 | \n", "4.950000 | \n", "65.076000 | \n", "151.730000 | \n", "20.819000 | \n", "65.546000 | \n", "158.100000 | \n", "6.880000 | \n", "27.690000 | \n", "
| max | \n", "22.670000 | \n", "29.770000 | \n", "5.610000 | \n", "70.070000 | \n", "166.020000 | \n", "23.250000 | \n", "73.470000 | \n", "172.050000 | \n", "7.650000 | \n", "30.900000 | \n", "